Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
2 результатів
Результати пошуку
Документ Математичний аналіз у прикладах і задачах. Частина 1(Національний технічний університет "Харківський політехнічний інститут", 2024) Курпа, Лідія Василівна; Лінник, Ганна Борисівна; Шматко, Тетяна ВалентинівнаВ навчальному посібнику наведено стисло теоретичний матеріал, надано практичні завдання, індивідуальні домашні завдання з таких розділів математичного аналізу: теорія границь; диференціальне числення для функцій однієї змінної; невизначений інтеграл; визначений інтеграл та його застосування для розв’язання геометричних задач. Посібник містить велику кількість задач для розв’язання на практичних заняттях та вдома стосовно розглянутих тем, передбачених робочою програмою з математичного аналізу. Призначено для студентів технічних університетів, які вивчають вищу математику англійською мовою.Документ Динамічний аналіз функціонально-градієнтних пористих сигмовидних сендвич пластин(Національний технічний університет "Харківський політехнічний інститут", 2023) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Тимченко, Галина МиколаївнаВ роботі розглянуто проблему дослідження вільних коливань функціонально-градієнтних (ФГ) пористих сигмовидних пластин типу сендвіч, які можуть мати складну геометричну форму та різні типи закріплення. Для розв'язання поставленої задачі використано варіаційно-структурний метод (RFM), який поєднує теорію R-функцій та варіаційний метод Релея-Рітца. Математичну постановку задачі виконано в рамках деформаційної теорії пластин першого порядку(FSDT. Розглянуто пластини, зовнішні шари яких вироблено із функціонально-градієнтних матеріалів (ФГМ), а заповнювач є ізотропним. Для різних моделей розподілення пор (сигмовидне рівномірне та нерівномірне) виведені формули для обчислення ефективних властивостей ФГМ. Числові результати для прямокутних пластин порівняно з відомими результатами, отриманими за допомогою інших методів. Досліджено власні коливання пластин зі складною формою плану. Отримані результати представлені у вигляді таблиць та графіків. Проаналізовано вплив об’ємної долі кераміки, різних видів ФГМ та коефіцієнту пористості на власні частоти коливань пластини.