Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
12 результатів
Результати пошуку
Публікація Percolation transition and physical properties of Bi1-xSbx solid solutions at low Bi concentration(Elsevier Ltd, 2020) Rogacheva, E. I.; Doroshenko, A. N.; Khramova, T. I.; Nashchekina, O. N.; Fedorov, A. G.; Mateychenko, P. V.The dependences of microhardness H, electrical conductivity σ, charge carrier mobility μH, the Seebeck coefficient S, and thermoelectric power factor P = S2σ on the composition of Bi1-xSbx solid solutions in the vicinity of pure Sb (x = 1.0–0.975) were obtained. In the range of x = 0.9925–0.9875, an anomalous decrease in H and S and increase in σ and μH with increasing Bi concentration were observed. For all the alloys, the dependences of H on the load on an indenter G were plotted. It was found that the H(G) dependences for samples with x smaller than ~ 0.99 and for samples with x exceeding 0.99, exhibit different behavior. The results obtained are interpreted on the basis of our assumption about the existence of a percolation-type phase transition from impurity discontinuum to impurity continuum that occurs in any solid solution.Публікація Percolation effects and self-organization processes in cold-pressed Bi2(Te1−xSex)3 solid solutions(Elsevier Ltd, 2021) Rogacheva, E. I.; Martynova, E. V.; Shelest, T. N.; Doroshenko, A. N.; Nashchekina, O. N.It was established that the dependences of thermoelectric and mechanical properties of cold-pressed Bi2(Te1−xSex)3 alloys on composition (x = 0–0.07) exhibit a non-monotonic behavior in certain concentration ranges: an anomalous decrease in the Seebeck coefficient, thermoelectric power factor, and microhardness, and increase in electrical conductivity with increasing x. We observed similar anomalies earlier for cast Bi2(Te1−xSex)3 alloys and explained them by percolation and self-organization phenomena. Thus, the existence of the anomalies does not depend on the method of sample preparation. However, in pressed samples as compared to cast ones conductivity type changes from p to n and thermoelectric power factor increases.Публікація Temperature and magnetic field dependences of thermoelectric properties of Bi1-xSbx solid solutions in the range x = 0-0.25(Elsevier Ltd, 2021) Rogacheva, E. I.; Doroshenko, A. N.; Nashchekina, O. N.Bi1–xSbx solid solutions are the best n-type thermoelectric materials for use at temperatures ≤200 K. An important parameter determining material’s figure of merit is charge carrier concentration. To determine it correctly, one should carry out measurements in a weak magnetic field. On the basis of the magnetic field dependences of the Hall coefficient and magnetoresistance, the dependences of the weak magnetic field boundary Bc on composition (x = 0–0.25) and temperature (T = 77–300 K) for polycrystalline Bi1–xSbx alloys were plotted. It was established that the Bc(x) dependences exhibit a non-monotonic behavior which is attributed to the existence of electronic phase transitions.Публікація Concentration dependences of galvanomagnetic and thermoelectric properties of Bi1-xSbx thin films in the range x = 0 – 0.25(Національна академія наук України, 2019) Rogacheva, E. I.; Doroshenko, A. N.; Sipatov, A. Yu.; Nashchekina, O. N.Публікація Percolation effects and self-organization processes in Bi₂(Te₁₋ₓSeₓ)₃ solid solutions(Easy Conferences Ltd, 2019) Rogacheva, E. I.; Shelest, T. N.; Martynova, E. V.; Doroshenko, A. N.; Nashchekina, O. N.Публікація Temperature and magnetic field dependences of thermoelectric properties of Bi1-xSbx solid solutions in the range x = 0 – 0.25(Easy Conferences Ltd, 2019) Rogacheva, E. I.; Doroshenko, A. N.; Nashchekina, O. N.Публікація Electronic phase transitions in thin films of Bi1-xSbx solid solutions(Grupo Pacifico, 2018) Rogacheva, E. I.; Doroshenko, A. N.; Nashchekina, O. N.Публікація Influence of Composition on the Thermoelectric Properties of Bi1-xSbx Thin Films(IOP Publishing Ltd, 2016) Rogacheva, E. I.; Nashchekina, O. N.; Doroshenko, A. N.; Sipatov, A. Yu.; Dresselhaus, M. S.Публікація Effect of Deviation from Stoichiometry on Thermoelectric Properties of Bi₂Te₃ Polycrystals and Thin Films in the Temperature Range 77-300 K(Сумський державний університет, 2019) Rogacheva, E. I.; Novak, K. V.; Doroshenko, A. N.; Nashchekina, O. N.; Budnik, A. V.Bi₂Te₃ semiconductor compound and Bi₂Te₃-based solid solutions are presently among the best lowtemperature thermoelectric materials. One of the methods of controlling the conductivity type and properties of Bi₂Te₃ is changing the stoichiometry of this compound. Earlier, we have obtained the room-temperature dependences of mechanical and thermoelectric properties of Bi₂Te₃ polycrystals on the degree of deviation from stoichiometry. The goal of this work is to investigate the behavior of such dependences at other temperatures. Bismuth telluride polycrystals with compositions in the range of 59.6-67.5 at. % Te were obtained, and for all the crystals the Seebeck coefficient, the Hall coefficient, electrical conductivity and charge carrier mobility were measured in the temperature range 77-300 K. On the basis of the temperature dependences, the isotherms of kinetic coefficients were plotted. It was found that similar to the room-temperature isotherms, the isotherms at lower temperatures were non-monotonic: they exhibited inversion of the conductivity sign between 60.5 and 61.0 at. % Te and extrema near 60.0 and 63.0 at. % Te. The experimental data are interpreted taking into account changes in the band and defect structures of Bi₂Te₃ under varying stoichiometry. The obtained results make it possible to control thermoelectric properties of Bi₂Te₃ polycrystals in the temperature range 77-300 K by changing the degree of deviation from stoichiometry.Публікація Transport properties of the bismuth telluride thin films with different stoichiometry in the temperature range 77-300 K(Науково-технологічний комплекс "Інститут монокристалів", 2020) Rogacheva, E. I.; Novak, K. V.; Doroshenko, A. N.; Nashchekina, O. N.; Budnik, A. V.The objects of the present study are thin films with thicknesses d = 45-620 nm prepared by thermal evaporation in vacuum from a single source, using undoped p- and n-type Bi₂Te₃ polycrystals with different stoichiometry (60.0 and 62.8 at. % Te, respectively) as a charge, and subsequent condensation on glass substrates at 500 K. The temperature dependences of the Hall coefficient Rн, electrical conductivity σ, and Hall charge carrier mobility μн of thin films were obtained in the range 77-300 K. It was found that the films had the same type of conductivity as the initial polycrystals in the entire temperature range studied and, like in the initial crystals, σ and μн decreased with increasing temperature. The exponents ν in the μн(T) dependences for the bulk polycrystals were larger than those for the films and increased with increasing d. In contrast to the p-type bulk polycrystals, Rн of the p-type films decreased under increasing temperature. In the n-type Bi₂Te₃, Rн decreased with temperature for both thin films and bulk crystals, however, the character of the Rн(T) dependences for the crystals and films differed. The decrease in Rн with temperature before the range of intrinsic conductivity in all thin films is attributed to the existence of donor and acceptor defect states.