Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
3 результатів
Результати пошуку
Документ Parametric synthesis of an electro-hydraulic executive device of a digital system of automatic control of a moving object(Національний технічний університет "Харківський політехнічний інститут", 2022) Aleksandrov, Eugene; Aleksandrova, Tetiana; Kostianyk, Iryna; Morgun, YaroslavMost modern moving objects, including military moving objects, are equipped with guidance and stabilization systems with electro-hydraulic executive devices. Intercontinental ballistic missiles, space vehicles, aircraft, the main armament of tanks and ships have high-precision digital guidance and stabilization systems with electro-hydraulic actuators with potentiometric feedback, capable of ensuring high accuracy of stabilization of a moving object in a given direction. The work is devoted to the development of a methodology for selecting the value of the feedback channel amplification coefficient, which provides the maximum margin of stability and the maximum speed of the closed digital system of guidance and stabilization of a moving object. The proposed technique is based on the application of a discrete-continuous mathematical model of a closed digital system of guidance and stabilization of a moving object, which contains ordinary differential equations for describing the disturbed motion of the continuous part of the stabilized object, as well as difference equations for describing a discrete stabilizer. To construct the characteristic equation of a closed discrete system, the mathematical model is reduced to a system of difference equations using matrix series. At the same time, the number of considered members of the matrix series depends on the value of the quantization period of the digital stabilizer, therefore, in addition to determining the amplification coefficient of the feedback channel of the executive device, the proposed technique also includes the determination of the value of the quantization period of the digital stabilizer.Документ On the stability of the stabilized motion of a carrier rocket with a liquid-propellant jet engine and an onboard digital computer in the stabilization loop(Національний технічний університет "Харківський політехнічний інститут", 2022) Aleksandrov, Eugene; Aleksandrova, Tetiana; Kostianyk, Iryna; Morgun, YaroslavThe problem of choosing the values of the variable parameters of the digital stabilizer of the cosmic stage of a carrier rocket with a liquid-propellant jet engine and an onboard digital computer in the stabilization loop, which ensures stable movement of the stage along the entire active section of the flight trajectory, is considered. The effect of the stabilizer quantization period on the stability region of a closed-loop stabilization system is considered. It is recommended to choose the intersection of stability regions corresponding to uniformly distributed moments of time along the active section of the stage flight trajectory as acceptable values for the variable parameters of the stabilizer of a non-stationary stabilization object.Документ To the question of constructing the regionof allowable values of variable parameters of a digital stabilizer of a movable object(Національний технічний університет "Харківський політехнічний інститут", 2020) Aleksandrov, Eugene; Aleksandrova, T. Ye.; Kostianyk, Iryna; Morgun, YaroslavSolving the problems of analysis and synthesis of closed digital systems for stabilization of movable objects is associated with significant difficulties. One of the possible ways to solve the problem is the transition from a mathematical model of a continual-discrete closed stabilization system to an approximate mathematical model of a discrete closed system using infinite matrix series containing the own matrix and the control matrix of the continuous part of the system, as well as the quantization period of the discrete part. Using the example of a closed digital stabilization system for a space stage of a solid-propellant carrier rocket flying in an airless space with a marching engine turned on, the problem of constructing stability regions of a closed digital stabilization system in the plane of variable parameters of a digital stabilizer was solved and a comparative analysis of these regions was carried out for various numbers of members of matrix seriestaken into account and different values of the digital stabilizer quantization period.