Вісник Національного технічного університету «ХПІ». Серія: Математичне моделювання в техніці та технологіях

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/67534

Офіційний сайт http://mmtt.khpi.edu.ua/

У збірнику наведені результати створення, верифікації та впровадження нових математичних методів та моделей для проектування і дослідження зразків сучасної техніки, виробничих процесів та інформаційних технологій різноманітного призначення. Журнал призначено для науковців, викладачів вищої школи, аспірантів, студентів і фахівців в галузях, де застосовується математичне моделювання.

Рік заснування: 2010. Періодичність: 2 рази на рік. ISSN(print): 2222-0631

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Обернена задача для балки Тимошенко з додатковою в’язко-пружною опорою при нестаціонарному деформуванні
    (Стильна типографія, 2023) Воропай, Олексій Валерійович; Поваляєв, Сергій Іванович; Єгоров, Павло Анатолійович
    Розглядається нестаціонарне навантаження механічної системи, яка складається з балки, шарнірно-обпертої по краях, і додаткової опори, встановленої в прольоті балки. Деформування балки моделюється на основі гіпотез С. П. Тимошенка з урахуванням інерції обертання та зсуву. Деформування балки описується системою диференціальних рівнянь у частинних похідних, яка розв’язується аналітично за допомогою розкладання шуканих функцій у відповідні ряди Фур’є і подальшого використання інтегрального перетворення Лапласа. Передбачається, що додаткова опора має лінійно-пружну і лінійно-в’язку складові, а в точці приєднання додаткової опори до балки переміщення збігаються. Реакція між балкою та додатковою опорою замінюється зовнішньою невідомою зосередженою силою, прикладеною до балки та є змінною у часі. Закон зміни у часі цієї невідомої реакції визначається з інтегрального рівняння Вольтерра. Викладається розв’язання оберненої задачі механіки деформівного твердого тіла, тобто передбачається, що нам відома зміна в часі прогину в деякій точці балки з додатковою опорою, а закон зміни в часі зовнішнього імпульсного навантаження, що викликав ці зміни прогину, є невідомим. Точка прикладення зовнішнього збурюючого навантаження і точка приєднання додаткової опори вважаються відомими і не змінюються в процесі деформування (при розв’язанні задачі передбачалося, що це можуть бути будь-які точки балки за винятком її країв). Описана обернена задача зводиться до системи двох інтегральних рівнянь Вольтерра першого роду щодо невідомих зовнішнього збурюючого навантаження і реакції між пластиною і додатковою опорою, яка розв’язується аналітично-числовим методом. Наведено аналітичні співвідношення та результати обчислень для конкретних числових параметрів. Результати, отримані в даній роботі, можуть бути використані для непрямого вимірювання імпульсних і ударних навантажень, що діють на балки з додатковими опорами, для яких враховуються не тільки пружні, але і лінійно-в’язкі характеристики.