Публікація: Diagnostics of the State of Safety-Oriented Enterprise Management System Using Neural Networks
dc.contributor.author | Havlovska, Nataliia | en |
dc.contributor.author | Koptieva (Fadieieva), H. M. | en |
dc.contributor.author | Babchynska, Olena | en |
dc.contributor.author | Rudnichenko, Yevhenii | en |
dc.contributor.author | Lopatovskyi, Viktor | en |
dc.contributor.author | Prytys, Vadym | en |
dc.date.accessioned | 2022-05-27T18:01:26Z | |
dc.date.available | 2022-05-27T18:01:26Z | |
dc.date.issued | 2022 | |
dc.description.abstract | Enterprise management is based on the need to make and justify management decisions that contribute to its development. It is almost impossible to determine the risk of a particular managerial decision, and excessive risk in the implementation of individual projects can lead to loss of business. Therefore, management faces the need to find a balance between benefits and risks, at which, on the one hand, it will be possible to develop a company and, on the other hand, adhere to postulates of safetyoriented management. Since management decisions cannot be foreseen for all possible situations and combinations of risk-benefit ratios, a universal model is proposed. It implies a golden ratio, depending on the limited number of current conditions, that would satisfy an enterprise management from the standpoint of sufficient justification on a decision. The article proposes a probabilistic neural network architecture and Matlab parameters of a probabilistic neural network for diagnosing the states of a safety-oriented control system. The proposed model in the form of a probabilistic neural network generates a response to input data on previous month under estimation, and forms an optimal state for a next month. | en |
dc.identifier.citation | Diagnostics of the State of Safety-Oriented Enterprise Management System Using Neural Networks / N. Havlovska [et al.] // TEM Journal. Technology, Education, Management, Informatics. – 2022. – Vol. 11, Iss. 1. – P. 13-23. | en |
dc.identifier.doi | oi.org/10.18421/TEM111-02 | |
dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/56995 | |
dc.language.iso | en | |
dc.publisher | UIKTEN - Association for Information Communication Technology Education and Science, Serbia | en |
dc.subject | managerial decision | en |
dc.subject | economic security | en |
dc.subject | risk | en |
dc.subject | benefit | en |
dc.subject | neural network | en |
dc.title | Diagnostics of the State of Safety-Oriented Enterprise Management System Using Neural Networks | en |
dc.type | Article | en |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 31475b3a-2b49-4acc-9d02-6ae53918cb34 | |
relation.isAuthorOfPublication.latestForDiscovery | 31475b3a-2b49-4acc-9d02-6ae53918cb34 |
Файли
Контейнер файлів
1 - 1 з 1
- Назва:
- TEMJ_2022_11_1_Havlovska_Diagnostics.pdf
- Розмір:
- 564.32 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 11.25 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: