R-functions in Development of Analytical Identification of Geometrical Objects

Ескіз

Дата

2016

ORCID

DOI

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Назва журналу

Номер ISSN

Назва тому

Видавець

NTU "KhPI"

Анотація

In this paper for mathematical and computer modeling of fractal geometry objects, machine parts and building structure the R-functions theory is applied. The mathematical tools of the R-functions theory are very convenient for the fractal geometry objects description. The equations of the Levi fractal, Pythagoras's tree, Koch's curve, cross and snowflake, Menger's sponge (also known as the Menger universal curve), Sierpinski's carpet, etc. have been constructed. The techniques using both the equations of three-dimensional primitives, and information about the equations of boundaries of sections of reset object have been developed. The equations of the automobile body surface, the bearing sleeve, the stepped shaft having two cogged pulleys, the rotary valve, the revolver drum, the screw having the shaped head, cut and lock surface, the cutter lift, the oil filter arm, etc. were constructed. The equations of the hexahedral cartridge having 91 fuel elements have been constructed using only two R-operations.

Опис

Ключові слова

R-functions, 3D-printing, fractal geometry, machine-building details, building structures

Бібліографічний опис

Sheiko T. I. R-functions in Development of Analytical Identification of Geometrical Objects / T. I. Sheiko, Yu. S. Litvinova, K. V. Maksymenko-Sheiko // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 477-484.

Підтвердження

Рецензія

Додано до

Згадується в