Dynamical instability of laminated plates with external cutout
Loading...
Date
Authors
item.page.orcid
item.page.doi
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier Inc.
Abstract
A method to study dynamical instability and non-linear parametric vibrations of symmetrically laminated plates of complex shapes and having different cutouts is proposed. The first-order shear deformation theory (FSDT) and the classical plate theory (CPT) are used to formulate a mathematical statement of the given problem. The presence of cutoutses sentially complicates the solution of buckling problem, since the stress field is non-uniform. At first, a plane stress analysis is carried out using the variational Ritz method and the R-functions theory. The obtained results are applied to investigate buckling and parametric vibrations of laminated plates. The developed method uses the R-functions theory, and it may be directly employed to study laminated plates of arbitrary forms and different boundary conditions. Besides, the proposed method is numerical-analytical, what greatly facilitates a solution of similar-like non-linear problems. In order to show the advantage of the developed approach, instability zones and response curves for the layered cross- and angle-ply plates with external cutouts are constructed and discussed.
Description
Citation
Awrejcewicz J. Dynamical instability of laminated plates with external cutout / J. Awrejcewicz, L. Kurpa, O. Mazur // International Journal of Non-Linear Mechanics. – 2016. – Vol. 81. – P. 103-114.