Чисельний аналіз контактної взаємодії тіл із поверхнями близької форми
Дата
2021
ORCID
https://orcid.org/0000-0002-6116-0572
https://orcid.org/0000-0002-4174-8213
https://orcid.org/0000-0002-1118-1834
https://orcid.org/0000-0003-0435-1847
https://orcid.org/0000-0002-5274-2618
https://orcid.org/0000-0002-4753-4267
https://orcid.org/0000-0001-9724-0630
https://orcid.org/0000-0002-9271-9586
https://orcid.org/0000-0002-4174-8213
https://orcid.org/0000-0002-1118-1834
https://orcid.org/0000-0003-0435-1847
https://orcid.org/0000-0002-5274-2618
https://orcid.org/0000-0002-4753-4267
https://orcid.org/0000-0001-9724-0630
https://orcid.org/0000-0002-9271-9586
DOI
doi.org/10.20998/2079-0775.2021.2.05
item.page.thesis.degree.name
item.page.thesis.degree.level
item.page.thesis.degree.discipline
item.page.thesis.degree.department
item.page.thesis.degree.grantor
item.page.thesis.degree.advisor
item.page.thesis.degree.committeeMember
Назва журналу
Номер ISSN
Назва тому
Видавець
Національний технічний університет "Харківський політехнічний інститут"
Анотація
У роботі на прикладі елементів конструкції із номінально близькими (майже співпадаючими) поверхнями описані дослідження контактної взаємодії їхніх деталей. Між елементами контактуючих деталей існує нерівномірно розподілений зазор. Від закону розподілу цього зазору залежить розподіл контактних зон та контактного тиску. Відповідно, від цього залежить напружено-деформований стан контактуючих тіл. Оскільки задача при цьому є суттєво нелінійною, то зі зростанням навантаження закони розподілу контактних зон та контактного тиску змінюються. Це різко змінює характер розв’язку порівняно із варіантом співпадіння контактуючих поверхонь. У останньому випадку розподіл контактного тиску, як установлено раніше, прямо пропорційний рівню навантажень, а зона контакту є незалежною від рівня навантажень. Отже, для реальних конструкцій, для яких неможливо позбутися відхилень від номінально співпадаючих форм, важливо враховувати вплив варіювання таких збурень на розподіл контактного тиску та на компоненти напружено-деформованого стану. Ці питання досліджені та описані у роботі на прикладі елементів штампів.
Contact interaction of structural elements has beenstudied in the case of nominally close (nearly matching) surfaces. A non uniform gap is present between the contacting parts. Contact pressure and contact spot depend on the shape of this gap. Correspondingly so does the stress-strain state of the contacting bodies too. Since the problem is essentially nonlinear, the contact pressure distribution and the contact zones change with the growing loads. The solution is qualitatively different to the case of perfectly matching bodies. For the latter case, the contact pressure is linearly proportional to the load and the contact zone is predefined. Hence for the real structures for which the deviation from the nominal shape is unavoidable the impact of these inaccuracies on the contact pressure distribution and the stress-strain state need to be taken into account. This problem is addressed in the paper by example of elements of stamping dies.
Contact interaction of structural elements has beenstudied in the case of nominally close (nearly matching) surfaces. A non uniform gap is present between the contacting parts. Contact pressure and contact spot depend on the shape of this gap. Correspondingly so does the stress-strain state of the contacting bodies too. Since the problem is essentially nonlinear, the contact pressure distribution and the contact zones change with the growing loads. The solution is qualitatively different to the case of perfectly matching bodies. For the latter case, the contact pressure is linearly proportional to the load and the contact zone is predefined. Hence for the real structures for which the deviation from the nominal shape is unavoidable the impact of these inaccuracies on the contact pressure distribution and the stress-strain state need to be taken into account. This problem is addressed in the paper by example of elements of stamping dies.
Опис
Ключові слова
метод варіаційних нерівностей, варіаційний принцип Калькера, метод скінченних елементів, метод граничних елементів, variational inequalities, Kalker’s variational principle, finite element method, boundary element method
Бібліографічний опис
Чисельний аналіз контактної взаємодії тіл із поверхнями близької форми / А. В. Грабовський [та ін.] // Вісник Національного технічного університету "ХПІ". Сер. : Машинознавство та САПР = Bulletin of the National Technical University "KhPI". Ser. : Engineering and CAD : зб. наук. пр. – Харків : НТУ "ХПІ", 2021. – № 2. – С. 29-38.