Кафедра "Комп'ютерна математика і аналіз даних"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7570
Офіційний сайт кафедри http://web.kpi.kharkov.ua/kmmm
Кафедра "Комп'ютерна математика і аналіз даних" заснована в 2002 році.
Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут", забезпечує підготовку бакалаврів і магістрів за проектно-орієнтованою освітньою програмою за напрямом науки про дані "DataScience".
У складі науково-педагогічного колективу кафедри працюють: 3 доктора наук: 1 – технічних, 1 – фізико-математичних, 1 – педагогічних; 15 кандидатів наук: 10 – технічних, 4 – фізико-математичних, 1 – педагогічних; 3 співробітників мають звання професора, 9 – доцента.
Переглянути
Результати пошуку
Документ Analysis and development of compromise solutions in multicriteria transport tasks(Technology center PC, 2017) Raskin, Lev; Sira, Oksana; Parfeniuk, YuriiThe object of research is the multicriteria transport problem of linear programming. Simultaneous consideration of several criteria is a problematic problem, since the optimal solutions for different criteria do not coincide. The possible solution of the problem is investigated – finding a way to obtain a compromise solution. Based on the results of the analysis of known methods for solving multicriteria problems (Pareto-set formation, scalarization of the vector criterion, concessions method), the last is justified. To implement the method, an iterative procedure is suggested, in which the initial plan is optimal according to the main criterion. At subsequent iterations, an assignment is made to the main criterion in order to improve the values of the additional criteria. The solution of the problem is continued until a compromise solution is obtained, ensuring the best value for the main criterion, provided that the values for the remaining criteria are no worse than those given. Important advantages of the proposed method: the simplicity of the computational procedure, the grounded technology of forming a new solution at each iteration, realizing the concept of assignment, quality control of the solution obtained at each step. The application of the proposed method opens the prospect of its generalization to the case when the initial data for the solution of the problem contain uncertainty.Документ Dynamic problem of formation of securities portfolio under uncertainty conditions(Scientific Route, Estonia, 2019) Raskin, Lev; Sira, Oksana; Katkova, TetianaThe analysis of known methods for solving the problem of forming a portfolio of securities in the face of uncertainty is carried out. Traditionally, the problem is solved under the assumption that for each type of asset, the values of the main statistical characteristics of the random value of their profitability (mathematical expectation and variance) are known. At the same time, the variance of portfolio returns, which is minimized, is used as a criterion for portfolio optimization. Two alternative approaches to solving the formulated problem are proposed. The first of them provides a decision on the criterion of the probability that the random total portfolio return will not be lower than the given. It is assumed that the random return for each type of asset is distributed normally and the statistical characteristics of the respective densities are known. The original problem is reduced to the problem of maximizing the quadratic fractional criterion in the presence of linear constraints. To solve this non-standard optimization problem, a special iterative algorithm is proposed that implements the procedure for sequential improvement of the plan. The method converges and the computational procedure for obtaining a solution can be stopped by any of the standard criteria. The second approach considers the possibility of solving the problem under the assumption that the distribution densities of random asset returns are not known, however, based on the results of preliminary statistical processing of the initial data, estimates of the values of the main numerical characteristics for each of the assets are obtained. To solve the problem, a new mathematical apparatus is used – continuous linear programming, which is a generalization of ordinary linear programming to the case when the task variables are continuous. This method, in the considered problem, is based on solving an auxiliary problem: finding the worst-case distribution density of a random total portfolio return at which this total return does not reach an acceptable threshold with maximum probability. Now the main minimax problem is being solved: the formation of the best portfolio in the worst conditions. The resulting computational scheme leads to the problem of quadratic mathematical programming in the presence of linear constraints. Next, a method is proposed for solving the problem of forming a portfolio of securities, taking into account the real dynamics of the value of assets. The problem that arises in this case is formulated and solved in terms of the general theory of control, using the Riccati equation.Документ Development of methods for supply management in transportation networks under conditions of uncertainty of transportation cost values(Scientific Route, Estonia, 2021) Raskin, Lev; Sira, Oksana; Parfeniuk, Yurii; Bazilevych, KseniiaThe problem of transport management in a distributed logistics system «suppliers – consumers» is considered. Under the assumption of a random nature of transportation costs, an exact algorithm for solving this problem by a probabilistic criterion has been developed. This algorithm is implemented by an iterative procedure for sequential improvement of the transportation plan. The rate of convergence of a computational procedure to an exact solution depends significantly on the dimension of the problem and is unacceptably low in real problems. In this regard, an alternative method is proposed, based on reducing the original problem to solving a nontrivial problem of fractional-nonlinear programming. A method for solving this problem has been developed and substantiated. The corresponding computational algorithm reduces the fractional-nonlinear model to the quadratic one. The resulting problem is solved by known methods. Further, the original problem is supplemented by considering a situation that is important for practice, when in the conditions of a small sample of initial data there is no possibility of obtaining adequate analytical descriptions for the distribution densities of the random costs of transportation. In this case, the available volume of statistical material is sufficient only to estimate the first two moments of unknown distribution densities. For this marginal case, a minimax method for finding the transportation plan is proposed. The first step is to solve the problem of determining the worst distribution density with the given values of the first two moments. In the second step, the transportation plan is found, which is the best in this most unfavorable situation, when the distribution densities of the random cost of transportation are the worst. To find such densities, let’s use the modern mathematical apparatus of continuous linear programming.Документ Comparator identification in the conditions of bifuzzy initial data(Scientific Route, Estonia, 2021) Raskin, Lev; Sira, Oksana; Katkova, TetianaWhen solving a large number of problems in the study of complex systems, it becomes necessary to establish a relationship between a variable that sets the level of efficiency of the system’s functioning and a set of other variables that determine the state of the system or the conditions of its operation. To solve this problem, the methods of regression analysis are traditionally used, the application of which in many real situations turns out to be impossible due to the lack of the possibility of direct measurement of the explained variable. However, if the totality of the results of the experiments performed can be ranked, for example, in descending order, thus forming a system of inequalities, the problem can be presented in such a way as to determine the coefficients of the regression equation in accordance with the following requirement. It is necessary that the results of calculating the explained variable using the resulting regression equation satisfy the formed system of inequalities. This task is called the comparator identification task. The paper proposes a method for solving the problem of comparator identification in conditions of fuzzy initial data. A mathematical model is introduced to describe the membership functions of fuzzy parameters of the problem based on functions (L–R)-type. The problem is reduced to a system of linear algebraic equations with fuzzy variables. The analytical relationships required for the formation of a quality criterion for solving the problem of comparator identification in conditions of fuzzy initial data are obtained. As a result, a criterion for the effectiveness of the solution is proposed, based on the calculation of membership functions of the results of experiments, and the transformation of the problem to a standard problem of linear programming is shown. The desired result is achieved by solving a quadratic mathematical programming problem with a linear constraint. The proposed method is generalized to the case when the fuzzy initial data are given bifuzzy.Документ Analysis of semi-Markov systems with fuzzy initial data(Scientific Route OÜ, Estonia, 2022) Raskin, Lev; Sira, Oksana; Sukhomlyn, Larysa; Korsun, RomanIn real operating conditions of complex systems, random changes in their possible states occur in the course of their operation. The traditional approach to describing such systems uses Markov models. However, the real non-deterministic mechanism that con trols the duration of the system’s stay in each of its possible states predetermines the insufficient adequacy of the models obtained in this case. This circumstance makes it expedient to consider models that are more general than Markov ones. In addition, when choosing such models, one should take into account the fundamental often manifested feature of the statistical material actually used in the processing of an array of observations, their small sample. All this, taken together, makes it relevant to study the possibility of developing less demanding, tolerant models of the behavior of complex systems. A method for the analysis of systems described under conditions of initial data uncertainty by semi-Markov models is proposed. The main approaches to the description of this uncertainty are considered: probabilistic, fuzzy, and bi-fuzzy. A procedure has been developed for determining the membership functions of fuzzy numbers based on the results of real data processing. Next, the following tasks are solved sequentially. First, the vector of stationary state probabilities of the Markov chain embedded in the semi-Markov process is found. Then, a set of expected values for the duration of the system’s stay in each state before leaving it is determined, after which the required probability distribution of the system states is calculated. The proposed method has been developed to solve the problem in the case when the parameters of the membership functions of fuzzy initial data cannot be clearly estimated under conditions of a small sample.Документ The original formula for predicting the survival of gastric cancer patients undergoing surgical treatment(RS Global Sp. z O. O., 2018) Sira, O. V.; Kirkilevsky, S. I.; Tkachenko, O. I.; Dubinina, V. G.; Mashukov, A. A.; Bilenko, A. A.; Merlich, S. V.; Maksimovsky, V. E.; Zgura, A. N.; Ratsiborsky, D. V.; Shilin, I. V.; Boychenko, A. I.The purpose of this work was to find ways to predict the survival of gastric cancer patients. The study included 221 patients who were radically operated in the abdominal department of the Odessa Regional Oncology Center from 2007 to 2013. The life expectancy of this group of patients was measured in months. From the factors given in the article, only the age of the patient, the presence and invasion in neighboring organs and the number of organs resected during the operation were those factors that had a significant impact on the prognosis. A formula was obtained for the formal evaluation of the duration of patients. The results are preliminary. Conclusions. As a result of the regression analysis, a polynomial (formula) was obtained, which can be used to predict the survival of patients who underwent surgery for gastric cancer. There is a need to create clearer gradations of survival dependencies of cancer patients from different clinical and morphological situations. A mathematical apparatus with many variables can be used to create similar models for the analysis of survival in other types of pathology.Документ Multi-criteria optimization in terms of fuzzy criteria definitions(Lviv Polytechnic National University, 2018) Raskin, Lev; Sira, Oksana; Sagaydachny, D.The problems of multi-criteria optimization are considered. Known methods for solving these problems are generalized to the case when weights that take into account the relative importance of particular criteria are not clearly defined. The procedure for constructing membership functions of fuzzy numbers, given by sets of intervals of possible values, using a linearized computation of least squares methods is substantiated. In this case, for the description of fuzzy numbers, the membership functions of (L-R)-type were chosen. A method for solving a fuzzy multi-criteria optimization problem for a scalarized criterion is proposed. The technology of solving the problem reduces it to a linear fractional problem of mathematical programming. A converging iterative procedure for finding the optimal plan is described. An alternative method for solving the original fuzzy problem based on the formation of a Pareto-set of non-dominated options is considered. To solve this problem, a procedure has been proposed for comparing fuzzy numbers using a probability-theoretic approximation of their membership functions.Документ Development of a model for the dynamics of probabilities of states of semi-Markov systems(Kharkiv National University of Radio Electronics, 2021) Raskin, Lev; Sira, Oksana; Sukhomlyn, Larysa; Korsun, RomanThe subject is the study of the dynamics of probability distribution of the states of the semi-Markov system during the transition process before establishing a stationary distribution. The goal is to develop a technology for finding analytical relationships that describe the dynamics of the probabilities of states of a semi-Markov system. The task is to develop a mathematical model that adequately describes the dynamics of the probabilities of the states of the system. The initial data for solving the problem is a matrix of conditional distribution laws of the random duration of the system's stay in each of its possible states before the transition to some other state. Method. The traditional method for analyzing semi-Markov systems is limited to obtaining a stationary distribution of the probabilities of its states, which does not solve the problem. A well-known approach to solving this problem is based on the formation and solution of a system of integral equations. However, in the general case, for arbitrary laws of distribution of the durations of the stay of the system in its possible states, this approach is not realizable. The desired result can only be obtained numerically, which does not satisfy the needs of practice. To obtain the required analytical relationships, the Erlang approximation of the original distribution laws is used. This technique significantly increases the adequacy of the resulting mathematical models of the functioning of the system, since it allows one to move away from overly obligatory exponential descriptions of the original distribution laws. The formal basis of the proposed method for constructing a model of the dynamics of state probabilities is the Kolmogorov system of differential equations for the desired probabilities. The solution of the system of equations is achieved using the Laplace transform, which is easily performed for Erlang distributions of arbitrary order. Results. Analytical relations are obtained that specify the desired distribution of the probabilities of the states of the system at any moment of time. The method is based on the approximation of the distribution laws for the durations of the stay of the system in each of its possible states by Erlang distributions of the proper order. A fundamental motivating factor for choosing distributions of this type for approximation is the ease of their use to obtain adequate models of the functioning of probabilistic systems. Conclusions. A solution is given to the problem of analyzing a semi-Markov system for a specific particular case, when the initial distribution laws for the duration of its sojourn in possible states are approximated by second-order Erlang distributions. Analytical relations are obtained for calculating the probability distribution at any time.Документ Construction of the fractional-nonlinear optimization method(Technology center PC, 2019) Raskin, Lev; Sira, OksanaA method for solving the fractional nonlinear optimization problem has been proposed. It is shown that numerous inventory management tasks, on the rational allocation of limited resources, on finding the optimal paths in a graph, on the rational organization of transportation, on control over dynamical systems, as well as other tasks, are reduced exactly to such a problem in cases when the source data of a problem are described in terms of a probability theory or fuzzy math. We have analyzed known methods for solving the fractional nonlinear optimization problems. The most efficient among them is based on the iterative procedure that sequentially improves the original solution to a problem. In this case, every step involves solving the problem of mathematical programming. The method converges if the region of permissible solutions is compact. The obvious disadvantage of the method is the uncontrolled rate of convergence. The current paper has proposed a method to solve the problem, whose concept echoes the known method of fractional-linear optimization. The proposed technique transforms an original problem with a fractional-rational criterion to the typical problem of mathematical programming. The main advantage of the method, as well its difference from known ones, is the fact that the method is implemented using a single-step procedure for obtaining a solution. In this case, the dimensionality of a problem is not a limiting factor. The requirements to a mathematical model of the problem, which narrow the region of possible applications of the devised procedure, imply: 1) the components of the objective function must be separable functions; 2) the indicators for the power of all nonlinear terms of component functions should be the same. Another important advantage of the method is the possibility of using it to solve the problem on unconditional and conditional optimization. The examples have been considered.Документ Formation of securities portfolio under conditions of uncertainty(Technology center PC, 2017) Sira, Oksana; Katkova, TetianaWe examined a problem on the formation of securities portfolio. A criterion for portfolio effectiveness is determined – a probability that the total portfolio profitability exceeds a threshold. In connection with real shortage of the volume of initial data, we substantiated the rejection of hypothesis about the normality of their distribution law and the problem is solved under assumption about the worst distribution density of these data. In this case, it is accepted that mathematical expectation and the dispersion of values for the cost of assets are the fuzzy numbers. The form of membership function of the fuzzy parameters in the problem is selected. We constructed an analytical expression to describe the criterion in the terms of fuzzy mathematics. In this case, a problem on the maximization of fractional-quadratic functional with linear constraints is obtained. We devised a method for solving the obtained fuzzy problem of mathematical programming, which reduces this problem to the conventional problem of nonlinear programming. In order to solve this problem, it is proposed to employ the optimization method of zero order. It is demonstrated that the portfolio risk depends quadratically on the mathematical expectation of its profitability. Recommendations are given regarding the choice of numerical value for the mathematical expectation of portfolio profitability depending on the acceptable portfolio risk.