Usage of convolutional neural network for multispectral image processing applied to the problem of detecting fire hazardous forest areas

dc.contributor.authorYaloveha, V.en
dc.contributor.authorHlavcheva, D.en
dc.contributor.authorPodorozhniak, A.en
dc.date.accessioned2019-11-22T10:51:27Z
dc.date.available2019-11-22T10:51:27Z
dc.date.issued2019
dc.description.abstractNeural networks are intensively developed and used in all spheres of human activity in the modern world. Their use to determine the fire hazardous forest areas can begin to solve the problem of preventing wildfires. In recent years, wildfires have acquired enormous proportions. Wildfires are difficult to control and, if they occur, require alarge amount of resources to eliminate them. The paper is devoted to solve the problem of identifying fire hazardous forest areas. The Camp Fire (California, USA) areas are considered. The purpose of the paper is to research the possibility of using convolutional neural networks for the detection fire hazardous forest areas using multispectral images obtained from Landsat 8. The tasks of research are finding the territories where the largest fires occurred in recent time; analyzing economic and ecologic losses from wildfires; receiving and processing multispectral images of wildfire areas from satellite Landsat 8; calculation of spectral indices (NDVI, NDWI, PSRI); developing convolutional neural network and analyzing results. The object of the research is the process of detecting fire hazardous forest areas using convolutional neural network. The subject of the research is the process of recognition multispectral images using deep learning neural network. The scientific novelty of the research is the recognition method of multispectral images by using convolutional neural networkhas been improved. The theory of deep learning neural networks, the theory of recognition multispectral images and mathematical statistics methodsare used. The spectral indices for allocating the object under research (green vegetation, humidity, dry carbon) were calculated. It is obtained that the classification accuracy for a convolutional neural network on the test data is 94.27%.en
dc.description.abstractУ сучасному світі нейронні мережі інтенсивно розвиваються і використовуються в усіх сферах людської діяльності. Їх застосування для визначення пожежонебезпечності лісових територій може розпочати вирішення проблеми попередження лісових пожеж. Лісові пожежі важко контролюються та, у разі виникнення, вимагають великої кількості ресурсів для їх усунення. Робота присвячена вирішенню задачі визначення пожежонебезпечності лісових територій. Розглядається територія пожежі «Camp Fire», що сталася у Каліфорнії (США). Метою роботи є дослідження можливості застосування згорткових нейронних мереж для визначення пожежонебезпечності лісових територій на основі мультиспектральних зображень, отриманих з супутника Landsat 8. Поставлена мета передбачає вирішення таких завдань: огляд територій, на яких відбулися наймасштабніші лісові пожежі за останній час, аналіз економічних та екологічних збитків від лісових пожеж; отримання та обробка мультиспектральних зображень території пожежі з супутника Landsat 8; розрахунок спектральних індексів (NDVI, NDWI, PSRI); реалізація згорткової нейронної мережі та аналіз результатів роботи. Об’єктом дослідження є процес визначення пожежонебезпечних лісових територій з використанням згорткової нейронної мережі. Предметом дослідження є процес розпізнавання мультиспектральних зображень з використанням нейронних мереж глибокого навчання. Наукова новизна полягає в удосконаленні методу розпізнавання мультиспектральних зображень за рахунок використання згорткових нейронних мереж. Методами досліджень є теорія нейронних мереж глибокого навчання, теорія розпізнавання мультиспектральних зображень, методи математичної статистики. Обчислено спектральні індекси для виділення характеристик досліджуваної території (зеленої рослинності, кількості вологи, сухого вуглецю). Отримана точність класифікації для згорткової нейронної мережі на тестовій вибірці склала 94.27%.uk
dc.identifier.citationYaloveha V. Usage of convolutional neural network for multispectral image processing applied to the problem of detecting fire hazardous forest areas / V. Yaloveha, D. Hlavcheva, A. Podorozhniak // Сучасні інформаційні системи = Advanced Information Systems. – 2019. – Т. 3, № 1. – С. 116-120.en
dc.identifier.doidoi.org/10.20998/2522-9052.2019.1.19
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/42923
dc.language.isoen
dc.publisherНаціональний технічний університет "Харківський політехнічний інститут"uk
dc.subjectdeep learningen
dc.subjectspectral indicesen
dc.subjectглибоке навчанняuk
dc.subjectспектральні індексиuk
dc.titleUsage of convolutional neural network for multispectral image processing applied to the problem of detecting fire hazardous forest areasen
dc.title.alternativeВикористання згорткової нейронної мережі для обробки мультиспектральних зображень, застосованої до проблеми виявлення пожежонебезпечних лісових територійuk
dc.typeArticleen

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
AIS_2019_3_1_Yaloveha_Usage.pdf
Розмір:
693.3 KB
Формат:
Adobe Portable Document Format
Опис:

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: