Comparator-based identification of food edibility from natural language description

dc.contributor.authorCherednichenko, Olga
dc.contributor.authorVovk, Maryna
dc.contributor.authorSharonova, Nataliia
dc.contributor.authorVorzhevitina, Anzhelika
dc.date.accessioned2026-01-07T08:14:04Z
dc.date.issued2025
dc.description.abstractAssessing the edibility of food based on consumer perception remains an underexplored yet practically significant challenge in food safety. This paper presents a novel framework for evaluating food suitability using natural language descriptions of sensory experiences, such as odor, appearance, and texture. By extracting structured features from unstructured, subjective input, our system leverages a comparatorbased identification approach to infer missing attributes and assess overall edibility. The model aligns incomplete descriptions with prototypical instances from labeled data, enabling robust classification even under uncertainty. We demonstrate that this method can support nuanced, human-like judgments and serve as a foundation for intelligent decision-support tools in consumer and public health contexts. The proposed framework opens avenues for integrating qualitative perception with structured inference in critical application domains.
dc.identifier.citationComparator-based identification of food edibility from natural language description [Electronic resource] / Olga Cherednichenko, Maryna Vovk, Nataliia Sharonova, and Anzhelika Vorzhevitina // AICS-2025: PhD Workshop on Artificial Intelligence in Computer Science at CoLInS 2025, May 15-16, 2025, Lviv, Ukraine / ed.: Olga Cherednichenko, Nina Khairova, Lyubomyr Chyrun [et al.] . – Electronic text data. – Lviv, 2025. – P. 185-199. – URL: https://ceur-ws.org/Vol-4015/paper14.pdf, free (accessed 07.01.2026).
dc.identifier.orcidhttps://orcid.org/0000-0002-9391-5220
dc.identifier.orcidhttps://orcid.org/0000-0003-4119-5441
dc.identifier.orcidhttps://orcid.org/0009-0004-9878-1761
dc.identifier.orcidhttps://orcid.org/0009-0001-0562-0191
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/97213
dc.language.isoen
dc.publisherCEUR-W
dc.subjectnatural language processing
dc.subjectfood safety
dc.subjectcomparator-based identification
dc.subjectfeature modeling
dc.titleComparator-based identification of food edibility from natural language description
dc.typeArticle

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Cherednichenko_Comparator-based_2025.pdf
Розмір:
2.61 MB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
11.15 KB
Формат:
Item-specific license agreed upon to submission
Опис: