Opportunities for adapting data write latency in geo-distributed replicas of multicloud systems

dc.contributor.authorKozina, Olha
dc.contributor.authorMachado, José
dc.contributor.authorVolk, Maksym
dc.contributor.authorHeiko, Hennadii
dc.contributor.authorPanchenko, Volodymyr
dc.contributor.authorKozin, Mykyta
dc.contributor.authorIvanova, Maryna
dc.date.accessioned2025-10-24T07:24:26Z
dc.date.issued2025
dc.description.abstractThis paper proposes an AI-based approach to adapting the data write latency in multicloud systems (MCSs) that supports data consistency across geo-distributed replicas of cloud service providers (CSPs). The proposed approach allows for dynamically forming adaptation scenarios based on the proposed model of multi-criteria optimization of data write latency. The generated adaptation scenarios are aimed at maintaining the required data write latency under changes in the intensity of the incoming request flow and network transmission time between replicas in CSPs. To generate adaptation scenarios, the features of the algorithmic Latord method of data consistency, are used. To determine the threshold values and predict the external parameters affecting the data write latency, we propose using learning AI models. An artificial neural network is used to form rules for changing the parameters of the Latord method when the external operating conditions of MCSs change. The features of the Latord method that influence data write latency are demonstrated by the results of simulation experiments on three MCSs with different configurations. To confirm the effectiveness of the developed approach, an adaptation scenario was considered that allows reducing the data write latency by 13% when changing the standard deviation of network transmission time between DCs of MCS.
dc.identifier.citationOpportunities for adapting data write latency in geo-distributed replicas of multicloud systems [Electronic resourse] / Olha Kozina, José Machado, Maksym Volk [et al.] // Future Internet. – Electron. text data. – 2025. – Vol. 17, iss. 10. – 27 p. – URL: https://www.mdpi.com/1999-5903/17/10/442, free (date of the application 24.10.2025.).
dc.identifier.doihttps://doi.org/10.3390/fi17100442
dc.identifier.orcidhttps://orcid.org/0000-0003-0740-7068
dc.identifier.orcidhttps://orcid.org/0000-0002-4917-2474
dc.identifier.orcidhttps://orcid.org/0000-0003-4229-9904
dc.identifier.orcidhttps://orcid.org/0000-0001-6958-8306
dc.identifier.orcidhttps://orcid.org/0000-0003-3364-3398
dc.identifier.orcidhttps://orcid.org/0009-0003-5965-9491
dc.identifier.orcidhttps://orcid.org/0000-0002-0848-6805
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/94420
dc.language.isoen
dc.publisherMDPI
dc.subjectmulticloud systems
dc.subjectdata writing latency
dc.subjectoptimization
dc.subjectdata consistency method
dc.titleOpportunities for adapting data write latency in geo-distributed replicas of multicloud systems
dc.typeArticle

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
FI_2025_17_10_Kozina_Opportunities_for_adapting.pdf
Розмір:
3.97 MB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: