Application of Solution Structure Method to Modeling Dynamic Response of Mechanical Structures
Дата
2016
Автори
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
NTU "KhPI"
Анотація
Transient nature of the loading conditions applied to the structural components makes dynamic analysis one
of the important components in the design-analysis cycle. Time-varying forces and accelerations can substantially
change stress distributions and cause a premature failure of the mechanical structures. In addition, it is
also important to determine dynamic response of the structural elements to the frequency of the applied loads.
In this paper we describe an application of the meshfree Solution Structure Method to the structural dynamics
problems. Solution Structure Method is a meshfree method which enables construction of the solutions to the
engineering problems that satisfy exactly all prescribed boundary conditions. This method is capable of using
spatial meshes that do not conform to the shape of a geometric model. Instead of using the grid nodes to enforce
boundary conditions, it employs distance fields to the geometric boundaries and combines them with the basis
functions and prescribed boundary conditions at run time. This defines unprecedented geometric flexibility of
the Solution Structure Method as well as the complete automation of the solution procedure.
Опис
Ключові слова
dynamic response, natural frequencies, finite element analysis, solution structure method, meshfree method, distance fields
Бібліографічний опис
Tsukanov I. Application of Solution Structure Method to Modeling Dynamic Response of Mechanical Structures / I. Tsukanov // Nonlinear Dynamics–2016 (ND-KhPI2016) : proceedings of 5th International Conference, dedicated to the 90th anniversary of Academician V. L. Rvachev, September 27-30, 2016 = Нелінійна динаміка–2016 : тези доп. 5-ї Міжнар. конф., 27-30 вересня 2016 р. – Kharkov : NTU "KhPI", 2016. – P. 515-522.