Machine learning methods application for solving the problem of biological data analysis
Дата
2018
ORCID
DOI
10.20998/2522-9052.2018.3.01
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Національний технічний університет "Харківський політехнічний інститут"
Анотація
According to statistics, every fifth married couple is faced with the inability to conceive a child. Male germ cells are very vulnerable, and the growing number of cases of male infertility confirms that in today's world there are many factors that affect the activity of spermatozoa and their number. But the important thing is not so much their quantity, but quality. The spermogram is an objective method of laboratory diagnosis, which allows to accurately assess the man’s ability to fertilize by analyzing ejaculate for a number of key parameters. Only a spermogram can answer the question of a possible male infertility and the presence of urological diseases. When constructing spermograms, it is important to determine not only the number of good spermatozoa, but also their morphology and mobility. Therefore, research and improvement of some stages of spermogramm is the purpose of the study. This article addresses the problem of classification of spermatozoa in good and bad ones, taking into account their mobility and morphology, using methods of machine learning. In order to implement the first stage of machine learning (with a teacher) in the graphic editor, educational specimens (training sample) were created. The training was implemented by three methods: the method of support vector machine, the logistic regression and the method of K - the nearest neighbors. As a result of testing, the method K - the nearest neighbors is chosen. At the testing stage, a sample of 15 different spermatozoa was used in different variations of rotation around their axis. The test sample did not contain specimens from the training sample and was formed taking into account the morphological characteristics of the spermatozoa, but did not copy them from the training sample. At the final stage of study, the program's functioningwas tested on real data.
За статистикою, кожна п'ята подружня пара стикається з неможливістю зачаття дитини. Чоловічі статеві клітини дуже вразливі, зростаюче число випадків чоловічого безпліддя підтверджує, що в сучасному світі дуже багато чинників, які впливають і на активність сперматозоїдів і на їх кількість. Та важливою є не стільки їх кількість, скільки якість. Спермограма є об'єктивним методом лабораторної діагностики, що дозволяє максимально точно оцінити здатність до запліднення чоловіка, проаналізувавши еякулят за рядом найважливіших параметрів. Тільки спермограма здатна відповісти на питання про можливе чоловіче безпліддя та про наявність урологічних захворювань. При побудові спермограми, важливо визначати не тільки кількість добрих сперматозоїдів, але й їх морфологію та рухливість. Тому дослідження та вдосконалення деяких етапів спермограми і є метою дослідження. У даній статті вирішується задача класифікації сперматозоїдів на добрі та погані, з урахуванням їх рухливості та морфології, із застосуванням методів машинного навчання. Для реалізації першого етапу машинного навчання (з вчителем) у графічному редакторі були створені навчальні екземпляри (тренувальна вибірка). Навчання було реалізована трьома методами: методом опорних векторів, логістична регресія та метод К - найближчих сусідів. За результатами тестування обрано метод К - найближчих сусідів. На етапі тестування використовувалася вибірка з 15 різних сперматозоїдів в різних варіаціях обертання навколо своєї осі. Тестова вибірка не містила примірників з тренувальної вибірки і була сформована з урахуванням морфологічних особливостей сперматозоїдів, але не копіювала їх з тренувальної вибірки. На завершальному етапі навчання роботу програми було протестовано на реальних даних.
За статистикою, кожна п'ята подружня пара стикається з неможливістю зачаття дитини. Чоловічі статеві клітини дуже вразливі, зростаюче число випадків чоловічого безпліддя підтверджує, що в сучасному світі дуже багато чинників, які впливають і на активність сперматозоїдів і на їх кількість. Та важливою є не стільки їх кількість, скільки якість. Спермограма є об'єктивним методом лабораторної діагностики, що дозволяє максимально точно оцінити здатність до запліднення чоловіка, проаналізувавши еякулят за рядом найважливіших параметрів. Тільки спермограма здатна відповісти на питання про можливе чоловіче безпліддя та про наявність урологічних захворювань. При побудові спермограми, важливо визначати не тільки кількість добрих сперматозоїдів, але й їх морфологію та рухливість. Тому дослідження та вдосконалення деяких етапів спермограми і є метою дослідження. У даній статті вирішується задача класифікації сперматозоїдів на добрі та погані, з урахуванням їх рухливості та морфології, із застосуванням методів машинного навчання. Для реалізації першого етапу машинного навчання (з вчителем) у графічному редакторі були створені навчальні екземпляри (тренувальна вибірка). Навчання було реалізована трьома методами: методом опорних векторів, логістична регресія та метод К - найближчих сусідів. За результатами тестування обрано метод К - найближчих сусідів. На етапі тестування використовувалася вибірка з 15 різних сперматозоїдів в різних варіаціях обертання навколо своєї осі. Тестова вибірка не містила примірників з тренувальної вибірки і була сформована з урахуванням морфологічних особливостей сперматозоїдів, але не копіювала їх з тренувальної вибірки. На завершальному етапі навчання роботу програми було протестовано на реальних даних.
Опис
Ключові слова
spermogram, morphology, mobility, pattern recognition, binary classification, спермограма, морфологія, розпізнавання образів, бінарна класифікація
Бібліографічний опис
Machine learning methods application for solving the problem of biological data analysis / O. B. Akhiiezer [et al.] // Сучасні інформаційні системи = Advanced Information Systems. – 2018. – Т. 2, № 3. – С. 5-9.