Methods of comparing interval objects in intelligent computer systems
dc.contributor.author | Shepelev, Gennady | en |
dc.contributor.author | Khairova, N. F. | en |
dc.date.accessioned | 2020-12-14T13:40:28Z | |
dc.date.available | 2020-12-14T13:40:28Z | |
dc.date.issued | 2017 | |
dc.description.abstract | Problems of expert knowledge representation by means of generalized interval estimates approach and using methods of comparing interval alternatives in the framework of intelligent computer systems are considered. The problems are common in economy, engineering and in other domains. Necessity of multi criteria approach to comparing problem that is taking into account both preference criteria and risk ones is shown. It is proposed to use a multi-steps approach to decision-making concerning choice of preferable interval alternatives. It is based on consistent using of different comparing methods: new collective risk estimating techniques, mean-risk‖ approach (for interval-probability situations) and Savage method (for full uncertainty situations). | en |
dc.identifier.citation | Shepelev G. Methods of comparing interval objects in intelligent computer systems [Electronic resource] / G. Shepelev, N. Khairova // Computational linguistics and intelligent systems (COLINS 2017) : proc. of the 1st Intern. Conf., 21 April, 2017, Kharkiv, Ukraine. – Electron. text data. – Kharkiv, 2017. – P. 100-109. – URL: http://colins.in.ua/wp-content/uploads/2018/02/colins_2017_102_111.pdf, free (accessed 14.12.2020). | en |
dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/49837 | |
dc.language.iso | en | |
dc.subject | interval alternatives | en |
dc.subject | risk estimating techniques | en |
dc.subject | collective risk assessment | en |
dc.subject | mean-risk approach | en |
dc.subject | generalized interval estimates | en |
dc.title | Methods of comparing interval objects in intelligent computer systems | en |
dc.type | Thesis | en |
Файли
Контейнер файлів
1 - 1 з 1
- Назва:
- Shepelev_Method_of_comparing_2017.pdf
- Розмір:
- 515.24 KB
- Формат:
- Adobe Portable Document Format
- Опис:
Ліцензійна угода
1 - 1 з 1
Ескіз недоступний
- Назва:
- license.txt
- Розмір:
- 11.25 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис: