Simulation of effects of metal phase in a diamond grain and bonding type on temperature in diamond grinding

Ескіз

Дата

2012

ORCID

DOI

10.1007/s00170-011-3382-7

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Springer-Verlag London

Анотація

Manufacturing diamond wheels on various bonds is a relatively high-cost process, requiring high labour and high consumption of expensive diamond grains but yielding relatively low productivity. With better knowledge of the various factors involved in the sintering process, the most efficient combinations can be found, leading to higher productivity. Currently, there are no scientifically based recommendations for the choice of the rational combinations of strength, brand of grain, graininess and concentration with the physical–mechanical properties of bonds. The aim of this research is the development of a technique for the theoretical definition of an optimal combination of strength properties of diamond grains and bond to provide maximum retention of diamond grain integrity during the process of diamond wheel manufacture. This is investigated using 3D simulations of the deflected mode of the sintering area of the wheel's diamond bearing layer.

Опис

Ключові слова

diamond grain, finite element method, 3D simulation, diamond wheel, synthetic diamond, diamond grinding

Бібліографічний опис

Simulation of effects of metal phase in a diamond grain and bonding type on temperature in diamond grinding / A. G. Mamalis [et al.] // The International Journal of Advanced Manufacturing Technology. – 2012. – Vol. 58, iss. 1-4. – P. 263-276.

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced