Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering
Дата
2017
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
ННК "IПСА" НТУУ "КПI iм. Iгоря Сiкорського"
Анотація
The proposed preference learning on clusters method allows to fully realizing the advantages of the kernel-based approach. While the dimension of the model is determined by a pre-selected number of clusters and its complexity do not grow with increasing number of observations. Thus real-time preference function identification algorithm based on training data stream includes successive estimates of cluster parameter as well as average cluster ranks updating and recurrent kernel-based nonparametric estimation of preference model.
Опис
Ключові слова
preference function, kernel machine, clustering, ranking learning
Бібліографічний опис
Lyubchyk L. M. Ranking Model Real-Time Adaptation via Preference Learning Based on Dynamic Clustering / L. M. Lyubchyk, A. A. Galuza, G. L. Grinberg // Системний аналiз та iнформацiйнi технологiї = System analysis and information technology : матерiали 19-ї Мiжнар. наук.-техн. конф. SAIT 2017, 22-25 травня 2017 р. – Київ : ННК "IПСА" НТУУ "КПI iм. Iгоря Сiкорського", 2017. – С. 12.