Analysis of Dynamical Heat Conductivity of the Reservoir and Fluid Evacuation Zone on the Gas Condensate Well Flow Rate

Ескіз

Дата

2020

DOI

doi.org/10.3390/j3010011

item.page.thesis.degree.name

item.page.thesis.degree.level

item.page.thesis.degree.discipline

item.page.thesis.degree.department

item.page.thesis.degree.grantor

item.page.thesis.degree.advisor

item.page.thesis.degree.committeeMember

Назва журналу

Номер ISSN

Назва тому

Видавець

Анотація

This study shows that the thermal conductivity of the rock borehole adjacent to the wells varies depending on the operation of the well. This is due to the fact that the actual temperature and temperature difference affect the humidity and other thermal properties of the rocks, which in turn affect the heat transfer coeffcient across the section between the moving gas and the rocks. The static temperature field of primitive geothermal gradients acquires changes in a dynamic form. Theoretical consideration of changes in the thermal conductivity of rocks near the face and the wells is proposed to improve the prediction of gas condensate wells production. The result is achieved by introducing the specified equations of the thermal energy balance in the radial filtration and lifting of well products, which contain the coeffcients of heat exchange and throttling. The refinement bias estimation of the 10%–15% level of gas condensate well extraction is shown using proposed methodological approach to relatively well-known (traditional in the field development practice) methods for estimating the extraction of a “medium well” from a particular oil and gas field evaluation. The results of this work demonstrate important scientific, applied, educational and methodological significance of using the methodology presented by the authors.

Опис

Ключові слова

gas-condensate well flow, heat conductivity of rocks, dynamic temperature field, heat transfer coeffcient, Joule–Thomson effect

Бібліографічний опис

Analysis of Dynamical Heat Conductivity of the Reservoir and Fluid Evacuation Zone on the Gas Condensate Well Flow Rate [Electronic resource] / K. F. Anzian [et al.] // Journal of multiple–valued logic and soft computing. – Electronic text data. – 2020. – Vol. 3. – P. 124-137. – Access mode: https://www.mdpi.com/2571-8800/3/1/11, free (date of the application 12.01.2022.).

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced