Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
| dc.contributor.author | Semenov, Serhii | |
| dc.contributor.author | Krupska-Klimczak, Magdalena | |
| dc.contributor.author | Wasiuta, Olga | |
| dc.contributor.author | Krzaczek, Beata | |
| dc.contributor.author | Mieczkowski, Patryk | |
| dc.contributor.author | Głowacki, Leszek | |
| dc.contributor.author | Yu, Jian | |
| dc.contributor.author | He, Jiang | |
| dc.contributor.author | Chernykh, Olena | |
| dc.date.accessioned | 2025-12-19T07:23:02Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | Ensuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations. | |
| dc.identifier.citation | Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions [Electronic resource] / Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta [et al.] // Sustainability. – Electronic text data. – 2025. – № 17, 6030. – 33 p. – URL: https://www.mdpi.com/2071-1050/17/13/6030, free (accessed 19.12.2025). | |
| dc.identifier.doi | https://doi.org/10.3390/su17136030 | |
| dc.identifier.orcid | https://orcid.org/0000-0003-4472-9234 | |
| dc.identifier.orcid | https://orcid.org/0000-0003-3558-0300 | |
| dc.identifier.orcid | https://orcid.org/0009-0002-2835-9552 | |
| dc.identifier.orcid | https://orcid.org/0000-0002-4389-2446 | |
| dc.identifier.uri | https://repository.kpi.kharkov.ua/handle/KhPI-Press/96513 | |
| dc.language.iso | en | |
| dc.publisher | MDPI | |
| dc.subject | resilient UAV navigation | |
| dc.subject | reinforcement learning | |
| dc.subject | path coordinates | |
| dc.subject | RNN filtering | |
| dc.subject | LSTM | |
| dc.subject | sensor data deficiency | |
| dc.subject | sustainable development | |
| dc.subject | smart regions | |
| dc.title | Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions | |
| dc.type | Article |
Файли
Контейнер файлів
1 - 1 з 1
Вантажиться...
- Назва:
- Sustainability_2025_17_Semenov_Intelligent_Assurance.pdf
- Розмір:
- 3.16 MB
- Формат:
- Adobe Portable Document Format
Ліцензійна угода
1 - 1 з 1
Вантажиться...
- Назва:
- license.txt
- Розмір:
- 11.25 KB
- Формат:
- Item-specific license agreed upon to submission
- Опис:
