Intelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions

dc.contributor.authorSemenov, Serhii
dc.contributor.authorKrupska-Klimczak, Magdalena
dc.contributor.authorWasiuta, Olga
dc.contributor.authorKrzaczek, Beata
dc.contributor.authorMieczkowski, Patryk
dc.contributor.authorGłowacki, Leszek
dc.contributor.authorYu, Jian
dc.contributor.authorHe, Jiang
dc.contributor.authorChernykh, Olena
dc.date.accessioned2025-12-19T07:23:02Z
dc.date.issued2025
dc.description.abstractEnsuring the resilient navigation of unmanned aerial vehicles (UAVs) under conditions of limited or unstable sensor information is one of the key challenges of modern autonomous mobility within smart infrastructure and sustainable development. This article proposes an intelligent autonomous UAV control method based on the integration of geometric trajectory modeling, neural network-based sensor data filtering, and reinforcement learning. The geometric model, constructed using path coordinates, allows the trajectory tracking problem to be formalized as an affine control system, which ensures motion stability even in cases of partial data loss. To process noisy or fragmented GPS and IMU signals, an LSTM-based recurrent neural network filter is implemented. This significantly reduces positioning errors and maintains trajectory stability under environmental disturbances. In addition, the navigation system includes a reinforcement learning module that performs real-time obstacle prediction, path correction, and speed adaptation. The method has been tested in a simulated environment with limited sensor availability, variable velocity profiles, and dynamic obstacles. The results confirm the functionality and effectiveness of the proposed navigation system under sensor-deficient conditions. The approach is applicable to environmental monitoring, autonomous delivery, precision agriculture, and emergency response missions within smart regions. Its implementation contributes to achieving the Sustainable Development Goals (SDG 9, SDG 11, and SDG 13) by enhancing autonomy, energy efficiency, and the safety of flight operations.
dc.identifier.citationIntelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions [Electronic resource] / Serhii Semenov, Magdalena Krupska-Klimczak, Olga Wasiuta [et al.] // Sustainability. – Electronic text data. – 2025. – № 17, 6030. – 33 p. – URL: https://www.mdpi.com/2071-1050/17/13/6030, free (accessed 19.12.2025).
dc.identifier.doihttps://doi.org/10.3390/su17136030
dc.identifier.orcidhttps://orcid.org/0000-0003-4472-9234
dc.identifier.orcidhttps://orcid.org/0000-0003-3558-0300
dc.identifier.orcidhttps://orcid.org/0009-0002-2835-9552
dc.identifier.orcidhttps://orcid.org/0000-0002-4389-2446
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/96513
dc.language.isoen
dc.publisherMDPI
dc.subjectresilient UAV navigation
dc.subjectreinforcement learning
dc.subjectpath coordinates
dc.subjectRNN filtering
dc.subjectLSTM
dc.subjectsensor data deficiency
dc.subjectsustainable development
dc.subjectsmart regions
dc.titleIntelligent Assurance of Resilient UAV Navigation Under Visual Data Deficiency for Sustainable Development of Smart Regions
dc.typeArticle

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
Sustainability_2025_17_Semenov_Intelligent_Assurance.pdf
Розмір:
3.16 MB
Формат:
Adobe Portable Document Format

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Вантажиться...
Ескіз
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: