Adapted neural network of information support subsystem

Ескіз

Дата

2019

DOI

doi.org/10.30748/nitps.2019.34.14

Науковий ступінь

Рівень дисертації

Шифр та назва спеціальності

Рада захисту

Установа захисту

Науковий керівник

Члени комітету

Назва журналу

Номер ISSN

Назва тому

Видавець

Харківський національний університет Повітряних Сил ім. Івана Кожедуба

Анотація

Safety of human life, the safety of his material values are main priorities in modern society. Objects of critical infrastructure are in a special risk zone. Accident statistics for them has remained high in recent years. Increased risk and a large number of incidents, including abroad, emphasize the relevance of this problem. An adapted neural network has been proposed for monitoring the situation at a railway crossing and informing the train driver of information about unexpected obstacles through the subsystem of information support in order to reduce the likelihood of an accident or reduce the severity of its consequences. Images from a railway crossing video surveillance camera are obtained. The results of neural network training and modeling using image data are given.
Безпека життєдіяльності людини, збереження її матеріальних цінностей є одним з основних пріоритетів в сучасному суспільстві. Найбільшому ризику піддаються об'єкти критичної інфраструктури, надзвичайні події на яких мають серйозні наслідки, у тому числі із людськими жертвами. На протязі останніх років статистика надзвичайних подій на залізничних переїздах як в Україні, так і за кордоном зберігається на високому рівні, що підкреслює актуальність даної проблеми. Велика кількість пригод пов’язана насамперед із підвищеним ризиком високотехнологічних об’єктів та наявністю людського фактору. У статті пропонується за допомогою адаптованої нейронної мережі підвищити рівень безпеки на небезпечних ділянках залізниці через підсистему інформаційного забезпечення машиніста поїзда. Ця система дозволяє виявити небезпечні ситуації у вигляді несподіваних перешкод на залізничному переїзді, повідомити машиніста поїзда та уникнути аварії або зменшити серйозність її наслідків завдяки завчасному гальмуванню і зниженню швидкості. Для вирішення поставленої задачі була обрана згортальна нейронна мережа через свої переваги перед іншими видами штучних нейронних мереж. Складність її використання полягає у підборі великої кількості змін-них параметрів та налаштуванні роботи мережі для вирішення конкретної задачі розпізнавання наявності перешкоди на залізничному переїзді у різні пори року при різних погодних умовах та часі доби. Реалізувати дану задачу необхідно для конкретних обчислювальних потужностей. Запропонована адаптована до особливостей спостережуваного об'єкта нейрона мережа, для якої максимально ефективно визначені такі параметри, як кількість шарів, розмірність ядра згортки для кожного з шарів, кількість ядер для кожного з шарів, крок зсуву ядра при обробці шару, наявність шарів підвибірки, ступінь зменшення розмірності, функція по зменшенню розмірності, функція активації нейронів, наявність і параметри вихідної повнозв’язної нейронної мережі на виході згортальної частини. Наведено результати навчання і моделювання роботи нейронної мережі по зображеннях, отриманих з камери відеоспостереження на залізничному переїзді.

Опис

Ключові слова

traffic safety, video surveillance, convolutional neural network, згортальна нейронна мережа, відеоспостереження, безпека руху

Бібліографічний опис

Semenov S. Adapted neural network of information support subsystem / S. Semenov, О. Lipchanska, M. Lipchanskyi // Наука і техніка Повітряних Сил Збройних Сил України. – 2019. – № 1 (34). – С. 102-106.

Підтвердження

Рецензія

Додано до

Згадується в