Білінійні керовані системи в задачі керування краном

dc.contributor.authorГригоров, Отто Володимировичuk
dc.contributor.authorОкунь, Антон Олександровичuk
dc.contributor.authorЛось, Євген Олександровичuk
dc.date.accessioned2020-01-15T09:29:34Z
dc.date.available2020-01-15T09:29:34Z
dc.date.issued2017
dc.description.abstractУ статті розглядається двомасова динамічна модель руху "візок – вантаж" для мостового крана із змінною довжиною підвісу. Поставлена задача щодо знаходження оптимального за часом керування краном, який перевозить вантажі з однієї початкової точки до кінцевої. Розглянуто два нових підходи щодо розв’язання такої задачі. У першому випадку, коли припускалося, що довжина підвісу змінюється за деяким наперед заданим законом, модель залишалася лінійною, однак система, котра описувала її рух, становилася системою із змінними коефіцієнтами. У другому випадку, коли припускалося, що довжиною підвісу можна керувати, модель набувала вигляду так званої біафінної системи. У випадку, коли довжина підвісу – заздалегідь відома кусково-лінійна функція, отримано розв’язання рівняння другого порядку із змінними коефіцієнтами, до якого зводилася система, котра описувала модель руху "візок – вантаж" для мостового крана. У розгляді відповідної біафінної системи не вдалося за допомогою використаних в роботі факторів показати факт керованості системи на всьому просторі. Для отримання позитивних результатів необхідно подальше дослідження біафінних та білінійних систем.uk
dc.description.abstractThe paper deals with two-mass dynamic "trolley – cargo" movement model that represents operation of an overhead crane with a variable length rope. A problem of finding the optimal time control of the overhead crane, carrying loads from one point to another, are set. Two new approaches to solve this problem are suggested and considered. For the first approach, when it is assumed that the rope length is varying according to some predetermined law, the model remains in a linear form, but the system, describing its motion, turns into the system with variable coefficients. For the second approach, assuming that the rope length can be controlled, the model reduces to the form of the so-called biaffine system. It is obtained a solution of the second order equation with variable coefficients for the case when the rope length is a piecewise linear function that is known in advance. Under consideration of the corresponding biaffine system with the factors used in the work we have not been able to show the fact of system controllability over the entire space. Further research of the biaffine and bilinear control systems is required to obtain positive results.ru
dc.identifier.citationГригоров О. В. Білінійні керовані системи в задачі керування краном / О. В. Григоров, А. О. Окунь, Є. О. Лось // Машинобудування : зб. наук. пр. = Engineering : coll. of sci. papers / гол. ред. О. В. Купріянов. – Харків : УІПА, 2017. – № 19. – С. 29-35.uk
dc.identifier.orcidhttps://orcid.org/0000-0003-4332-4884
dc.identifier.orcidhttps://orcid.org/0000-0002-6467-4229
dc.identifier.orcidhttps://orcid.org/0000-0002-2565-0945
dc.identifier.urihttps://repository.kpi.kharkov.ua/handle/KhPI-Press/43711
dc.language.isouk
dc.publisherУкраїнська інженерно-педагогічна академіяuk
dc.subjectбіафінна системаuk
dc.subjectмодель "візок – вантаж"uk
dc.subjectколивання вантажуuk
dc.subjectоптимальне керуванняuk
dc.subjectbiaffine systemen
dc.subject"trolley – cargo" movement modelen
dc.subjectcargo oscillationsen
dc.subjectoptimal controlen
dc.titleБілінійні керовані системи в задачі керування краномuk
dc.title.alternativeBilinear control systems for a problem of optimal crane controlen
dc.typeArticleen

Файли

Контейнер файлів

Зараз показуємо 1 - 1 з 1
Ескіз
Назва:
Mashynobuduvannia_2017_19_Hryhorov_Biliniini_systemy.pdf
Розмір:
340.39 KB
Формат:
Adobe Portable Document Format
Опис:

Ліцензійна угода

Зараз показуємо 1 - 1 з 1
Ескіз недоступний
Назва:
license.txt
Розмір:
11.25 KB
Формат:
Item-specific license agreed upon to submission
Опис: