Структура тонких пленок p-Bi₂Se₃, полученных термическим испарением в вакууме из одного источника
Дата
2015
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Інститут термоелектрики НАН України
Анотація
С использованием методов рентгеновской дифрактометрии, сканирующей электронной микроскопии, энергодисперсионной спектрометрии и атомной силовой микроскопии исследованы механизм роста, микроструктура и кристаллическая структура тонких пленок Bi₂Te₃ с толщинами d = 28-620 нм, полученных термическим испарением в вакууме кристаллов Bi₂Te₃ стехиометрического состава на стеклянные подложки. Полученные тонкие пленки были поликристаллическими, обладали р-типом проводимости и не содержали других фаз, кроме Bi₂Te₃. Показано, что с увеличением толщины пленок размер кристаллитов увеличивается до ~ 700-800 нм. Установлено, что преобладающим направлением роста кристаллитов является направление [00l], соответствующее направлению тригональной оси С₃ в гексагональной решетке. С увеличением толщины пленок свыше ~ 200-250 нм наряду с отражениями от плоскостей (00l) появляются отражения от других плоскостей, свидетельствующие о некоторой разориентации кристаллитов. Полученные результаты показывают, что, используя простой и недорогой метод термического испарения из одного источника и оптимальные технологические параметры, можно получить тонкие пленки p-Bi₂Te₃ достаточно высокого качества.
The growth mechanism, microstructure, and crystal structure of thin Bi₂Te₃ films with thicknesses d = 28 – 620 nm prepared by thermal evaporation of stoichiometric Bi₂Te₃ crystals in vacuum onto glass substrates were studied using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and atomic force microscopy. The obtained thin films were polycrystalline, exhibited p-type conductivity and did not contain any other phases except for Bi₂Te₃. It was shown that with increasing film thickness, the crystallite size increased up to ~ 700-800 nm. It was established that the preferential orientation of crystallite growth was [00l] direction corresponding to a trigonal axis С₃ in hexagonal lattice. When the film thickness exceeded ~ 200-250 nm, along with reflections from (00l) planes, reflections from other planes appeared, which indicated a certain disorientation of crystallites. The results obtained show that using a simple and inexpensive method of thermal evaporation from a single source and choosing optimal technological parameters, one can grow thin p-Bi₂Te₃ films of sufficiently high quality.
The growth mechanism, microstructure, and crystal structure of thin Bi₂Te₃ films with thicknesses d = 28 – 620 nm prepared by thermal evaporation of stoichiometric Bi₂Te₃ crystals in vacuum onto glass substrates were studied using X-ray diffraction, scanning electron microscopy, energy dispersive spectroscopy, and atomic force microscopy. The obtained thin films were polycrystalline, exhibited p-type conductivity and did not contain any other phases except for Bi₂Te₃. It was shown that with increasing film thickness, the crystallite size increased up to ~ 700-800 nm. It was established that the preferential orientation of crystallite growth was [00l] direction corresponding to a trigonal axis С₃ in hexagonal lattice. When the film thickness exceeded ~ 200-250 nm, along with reflections from (00l) planes, reflections from other planes appeared, which indicated a certain disorientation of crystallites. The results obtained show that using a simple and inexpensive method of thermal evaporation from a single source and choosing optimal technological parameters, one can grow thin p-Bi₂Te₃ films of sufficiently high quality.
Опис
Ключові слова
теллурид висмута, толщина, направление роста, гексагональная решетка, кристалл, жидкофазная эпитаксия, bismuth telluride, thermal evaporation, thin films, thickness, structure, growth orientation
Бібліографічний опис
Структура тонких пленок p-Bi₂Se₃, полученных термическим испарением в вакууме из одного источника / Е. И. Рогачева [и др.] // Термоэлектричество. – 2015. – № 2. – С. 5-16.