Triangulation and Characterization of the Subsolidus Structure in the Systems CaO–CoO–MoO₃, CoO–Al₂O₃–MoO3 and CaO–Al₂O₃–MoO₃
Вантажиться...
Дата
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник/консультант
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Український державний хіміко-технологічний університет
Анотація
Three-component systems CaO–CoO–MoO3, CoO–Al2O3–MoO3 and CaO–Al2O3–MoO3 are characterized in this work. The results of the research of the subsolidus structure of the systems under study are given. Diagrams of the systems in the field of the subsolidus are presented. The calculations of the changes of Gibbs free energy are performed at different temperatures for the model reactions. The thermodynamic and geometric topological calculations based on the developed thermodynamic database allow establishing the direction of solid-phase reactions in the three-component systems CaO–CoO–MoO3,CoO–Al2O3–MoO3 and CaO–Al2O3–MoO3 with the participation of steadily existing compounds; as a result, all conodes in these systems have been determined. The main geometric topological calculations of elementary triangles and phases of systems are performed. Geometric topological system performance is important for the prediction of the accuracy of a dosage of components and the duration of their mixing before synthesis to obtain materials with the specified phase composition. The data on subsolidus structure of the considered three-component systems are essential for further forecasting phase structure of the aluminate cements fabricated with the use of the waste of cobalt catalysts that additionally contain molybdenum oxide
Опис
Бібліографічний опис
Triangulation and Characterization of the Subsolidus Structure in the Systems CaO–CoO–MoO₃, CoO–Al₂O₃–MoO3 and CaO–Al₂O₃–MoO₃ / G. N. Shabanova, A. N. Korohodska, S. V. Levadna, O. A. Gamova // Voprosy khimii i khimicheskoi tekhnologii = Питання хімії та хімічної технології. – 2019. – № 6 (127). – P. 268–274