Studying items similarity for dependable buying on electronic marketplaces
Дата
2018
ORCID
DOI
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
The processing of product buying is a very difficult task when we have thousands of items in each market category. In order to study items similarity for dependable buying we try to analyze item descriptions on AliExpress, eBay marketplaces and test k-means algorithm for item grouping/product segmentation. The usage of the classical clusterization algorithms for grouping similar products according to their descriptions is studied. A corpus of different products (bikes and smartphones) from e-shop AliExpress, eBay is developed. Each entity in this corpus contains photos and a product description. Each entity in this corpus contains product description with different fields. These short texts are used for experiments. As a result, it is found out that the k-means algorithm works well only for uniformly distributed data by categories, but this is not suitable for the segmentation of heterogeneous descriptions. The task of item descriptions systematization is set in the research below.
Опис
Ключові слова
e-commerce, dependable buying, recomendation systems, product search, clusterization, k-means, TFIDF
Бібліографічний опис
Studying items similarity for dependable buying on electronic marketplaces [Electronic resource] / O. Cherednichenko [et al.] // Computational linguistics and intelligent systems (COLINS 2018) : proc. of the 2nd Intern. Conf., June 25-27, 2018. Vol. 1: Main Conference / ed.: V. Lytvyn [et al.]. – Electron. text data. – Lviv, 2018. – P. 78-89. – URL: http://ceur-ws.org/Vol-2136/10000078.pdf, free (accessed 01.06.2020).