Кафедра "Видобування нафти, газу та конденсату"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/927

Офіційний сайт кафедри http://web.kpi.kharkov.ua/dngik

Кафедра "Видобування нафти, газу та конденсату" була заснована в 2010 році для підготовки спеціалістів в нафтогазовій промисловості.

Характерною рисою діяльності кафедри "Видобування нафти, газу та конденсату" є постійний зв'язок з підприємствами та організаціями-замовниками фахівців. Випускники кафедри працюють у галузі видобування, транспортування, використання та реалізації нафти і газу, а також великої кількості сировини, отриманої при їх технологічній переробці.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 2 доктора технічних наук, 3 кандидата технічних наук; 2 співробітника мають звання професора, 1 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Determining the rational operating parameters for granite crushing to obtain cubiform crushed stone
    (Dnipro University of Technology, 2022) Bozhyk, D. P.; Sokur, M. I.; Biletskyi, V. S.
    Purpose. Determining the rational operating parameters for granite crushing under impact in the field of centrifugal forces to obtain cubiform crushed stone. In order to achieve the purpose set, the task is to determine the operating parameters for obtaining the main grain-size classes: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm. Methods. The crushing process of granite crushed stone is studied in the conditions of the Kolomoievskyi Granite Quarry, Dnipropetrovsk region. Granite crushed stone with an initial grain-size of 100.0-0.0 mm and strength grade of M1400 is subjected to crushing. The accelerating rotor rotation frequency is the design value n = 200-1200  min⁻¹. Fine crushing of granite is performed in a centrifugal-impact crusher by a free impact in the field of centrifugal forces. Findings. The optimal speed modes of centrifugal crusher operation, which provide the production of high-quality crushed stone with a maximum content of 90-95% cubiform fractions, have been substantiated. Originality. The yield dependences have been obtained of the grain-size classes: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm depending on the speed mode of the centrifugal crusher operation. Practical implications. The operating parameters for obtaining the main grain-size classes of cubiform crushed stone from granite have been determined: -50.0 + 20.0; -40.0 + 20.0; -20.0 + 10.0; -10.0 + 5.0 and 5.0 mm. In particular, it has been determined that for the production of cubiform crushed stone with -50.0 + 20.0 mm grain-size, the rotor rotation reasonable speed is 400-500  min⁻¹ (the speed of material departure from the accelerating rotor is 45-50 m/sec); for cubiform crushed stone of -40.0 + 20.0 mm grain-size, the speed mode is 200 min⁻¹ (25 m/sec); for cubiform crushed stone of -20.0 + 10.0 mm grain-size – 600-650 min⁻¹ (70-80 m/sec), respectively. The maximum content of cubiform fractions in the -20.0 + 10.0 mm grain-size class is 95%, which is achieved at a rotor speed of 650-700 min⁻¹ (departure speed is 75-80 m/sec). The maximum content of cubiform fractions in the -10.0 mm grain-size class is 94-95%, which is achieved at the accelerating rotor speed within 700-800 min⁻¹ (departure speed is 70-80 m/sec). The obtained data make it possible to practically choose a rational speed mode of the centri-fugal-impact crusher operation to obtain the maximum yield of cubiform crushed stone.
  • Ескіз
    Документ
    Дослідження технології адгезійного збагачення тонкодисперсного і нанозолота
    (Національний технічний університет "Дніпровська політехніка", 2016) Білецький, Володимир Стефанович
    Мета. Узагальнення вітчизняного досвіду створення технології адгезійного збагачення золота, виклад основних результатів досліджень. Методика. Лабораторні та стендові експериментальні дослідження процесу одержання адгезійно активних вугільно-масляних гранул-носіїв частинок золота і власне адгезійного вилучення нано-, тонко- і дрібнодисперсного золота з рудної пульпи, препарування гранул-носіїв та їх мікроскопія, спектрофотометрія водної фази, планування експерименту для одержання статистичної моделі адгезійної здатності вугільно-масляних гранул-носіїв. Результати. Експериментально отримана режимна карта процесу масляної грануляції вугілля для одержання гранул-носіїв частинок золота. Встановлені раціональні режимні параметри пелетування гранул: витрати реагенту-зв’язуючого, гранулометричний склад вихідного вугілля, концентрація гідросуміші, тривалість пелетування, інтенсивність агітації гідросуміші. Рекомендовано як вихідне вугілля зольністю Ad = 10%; крупністю – 0.074 мм. Масляний агент – мазут марки М100 та гас. Запропоновані раціональні схемні рішення процесу адгезійного збагачення золота, зокрема, з перечисною флотацією, що підвищує вилучення Au до 90% і доводить його екологічну чистоту до флотаційної. Показано, що при модифікуванні поверхні вугільно-масляних гранул краун-етером на їх поверхні відбувається концентрація також наночастинок золота крупністю 20 – 30 нм, що виявлено вперше і пояснюється утворенням супрамолекулярного ансамблю “краун-етер – нанозолото”. Обґрунтовано й запатентовано раціональний режим пелетування при турбулентності, яка оцінюється числом Рейнольдса Re в межах 900 – 12000. Розроблено теоретичні основи механізму отримання вуглемасляних гранул-носіїв, зокрема його феноменологічну схему, проаналізовано субпроцеси адгезійного контакту “вугілля – масло” й елементарного акту агрегації та формування гранул-носіїв. Методом планованого експерименту одержано статистичні математичні моделі, які описують картину впливу ряду факторів на липкість “адгезив – субстрат” (“вуглемасляні гранули – золото”). Наукова новизна. Розроблено наукові основи та виконана експериментальна апробація технології адгезійного збагачення золота. Обґрунтовані раціональні схемні рішення та режимні параметри процесу адгезійного збагачення золота, зафіксовано ефект концентрації на поверхні гранул-носіїв нанозолота, що відбувається з підвищеною інтенсивністю за умови застосування краун-етеру. Практична значимість. Отримані результати лабораторних і стендових експериментальних досліджень із достатньою для практичного застосування точністю можуть використовуватися для реалізації адгезійного збагачення дрібнодисперсного і нано- золота в межах крупності частинок “перші сотні мкм – перші десятки нм”.