Кафедра "Комп'ютерна інженерія та програмування"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1095

Офіційний сайт кафедри https://web.kpi.kharkov.ua/cep

Від 26 листопада 2021 року кафедра має назву – "Комп’ютерна інженерія та програмування"; попередні назви – “Обчислювальна техніка та програмування”, “Електронні обчислювальні машини”, первісна назва – кафедра “Математичні та лічильно-вирішальні прилади та пристрої”.

Кафедра “Математичні та лічильно-вирішальні прилади та пристрої” заснована 1 вересня 1961 року. Організатором та її першим завідувачем був професор Віктор Георгійович Васильєв.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут". Перший випуск – 24 інженери, підготовлених кафедрою, відбувся в 1964 році. З тих пір кафедрою підготовлено понад 4 тисячі фахівців, зокрема близько 500 для 50 країн світу.

У складі науково-педагогічного колективу кафедри працюють: 11 докторів технічних наук, 21 кандидат технічних наук, 1 – економічних, 1 – фізико-математичних, 1 – педагогічних, 1 доктор філософії; 9 співробітників мають звання професора, 14 – доцента, 2 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Adapted neural network of information support subsystem
    (Харківський національний університет Повітряних Сил ім. Івана Кожедуба, 2019) Semenov, Sergiy; Lipchanska, Oksana; Lipchanskyi, Maksym
    Safety of human life, the safety of his material values are main priorities in modern society. Objects of critical infrastructure are in a special risk zone. Accident statistics for them has remained high in recent years. Increased risk and a large number of incidents, including abroad, emphasize the relevance of this problem. An adapted neural network has been proposed for monitoring the situation at a railway crossing and informing the train driver of information about unexpected obstacles through the subsystem of information support in order to reduce the likelihood of an accident or reduce the severity of its consequences. Images from a railway crossing video surveillance camera are obtained. The results of neural network training and modeling using image data are given.
  • Ескіз
    Документ
    Інтелектуальна система контролю стану небезпечних ділянок залізничного шляху
    (Національний технічний університет "Харківський політехнічний інститут", 2018) Семенов, Сергій Геннадійович; Ліпчанська, Оксана Валентинівна
    Залізничний транспорт є одним з найважливіших об'єктів критичної інфраструктури України і для забезпечення його безпеки потребує вдосконалення система управління безпекою руху поїздів шляхом впровадження сучасних комп'ютерних інформаційних технологій і засобів. Одним з таких шляхів є використання інтелектуальної системи контролю стану небезпечних ділянок залізничного шляху, зокрема на залізничних переїздах. Вирішення даної проблеми набуває ще більшої актуальності в разі, якщо мобільна мережа перенавантажується та машиніст втрачає зв'язок із камерою відеоспостереження на переїзді, в результаті чого не в змозі спостерігати стан переїзду. У статті запропоновано використання інтелектуальної системи для контролю стану небезпечних ділянок залізничного шляху, зокрема на залізничному переїзді. Розглянуто загальну архітектуру згортальної нейронної мережі. Запропоновано оптимізовану архітектуру згортальної нейронної мережі для розпізнавання небезпечних ситуацій на залізничному шляху. Надано рекомендації щодо налаштування параметрів, які варіюються, при побудові та навчанні згортальної нейронної мережі. Наведені результати тестування роботи мережі при розпізнаванні вільного шляху та при наявності критичної ситуації за різних умов. Одержала подальшого розвитку інтелектуальна система контролю стану небезпечних ділянок залізничного шляху, яка відрізняється від відомих використанням оптимізованої архітектури для зменшення часу обробки зображень, що дозволило підвищити точність та оперативність розпізнавання ситуацій на зображеннях та, як слідство, підвищити рівень безпеки залізничного транспорту на окремих небезпечних ділянках.