Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Дослідження стійкості нелінійних нормальних мод коливань дисипативної системи під впливом магнітного поля
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Сурганова, Юлія Едуардівна; Міхлін, Юрій Володимирович
    У статті проведено дослідження динаміки коливальної системи, що складається з двох маятників, з’єднаних пружним зв’язком і які знаходяться в магнітному полі. Розглядається випадок, коли маси маятників суттєво відрізняються. За наявності різних зовнішніх факторів, таких як магнітні сили та навантаження, які є в інженерних системах, аналіз режимів коливань у нелінійних системах ускладнюється. У цій роботі проведено аналіз пов’язаної нелінійної нормальної моди коливань у системі, що розглядається. Досліджується вплив зміни параметрів системи, як при малих, так і при великих початкових кутах відхилення маятників, на цю моду коливань. Для аналізу коливальних режимів використовувалися як аналітичний метод, а саме метод багатьох масштабів, так і чисельне моделювання на основі методу Рунге-Кутта четвертого порядку. Використовуються такі початкові умови розрахунку коливального режиму, що були визначені аналітично. Моделювання включає побудову фазових діаграм, траєкторій у конфігураційному просторі та спектрів, що дозволяє оцінити динаміку системи, включаючи як регулярні, так і складні режими коливань. Для вивчення стійкості коливального режиму використовується чисельно-аналітичний метод, пов’язаний із критерієм стійкості за Ляпуновим. Стійкість мод коливань визначається шляхом оцінки ортогональних відхилень стосовно відповідних траєкторій моди у конфігураційному просторі. Отримано області нестійкості на площинах та у просторі параметрів системи.