Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Resonance behavior of the non-ideal system which contains a snap-trough truss as absorber
    (Sapienza University of Rome, 2019) Mikhlin, Yuri V.; Onizhuk, Anton A.
    A resonance behavior of a system containing the linear oscillator, the Mises girder as absorber of elastic vibrations and the source of energy with a limited power-supply is analyzed. Stationary resonance regimes of vibrations near stable equilibrium position are considered, namely, vibrations near the resonance 1:1 between the linear oscillator and the motor, vibrations near the resonance 1:1 between the absorber and the motor. The stationary regime of snap through motion is also considered.
  • Ескіз
    Документ
    Stability of stationary regimes in nonlinear systems: analytical and numerical approaches
    (Sapienza University of Rome, 2019) Mikhlin, Yuri V.; Shmatko, Tatyana; Rudneva, Gayane; Goloskubova, Natalyia S.
    A stability of stationary regimes in the form of nonlinear normal modes (NNMs) with rectilinear or nearrectilinear trajectories is analysed by using the Ince algebraization when a variable associated with the vibration mode is chosen as the new independent argument. In this case the variational equations are transformed to equations with singular points. Other approach is realized for NNMs with regular or chaotic behavior in time. Namely, a test which is a consequence of the well-known Lyapunov criterion of stability is used. Both approaches are also used in analysis of stability of other stationary regimes, namely, standing or traveling nonlinear waves.