Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Research of Nonlinear Vibrations of Laminated Shallow Shells with Cutouts by R-functions Method
    (NTU "KhPI", 2016) Kurpa, Lidiya; Timchenko, Galina; Osetrov, Andriy Olexandrovich
    In present work an effective method to research geometrically nonlinear free vibrations of elements of thin-walled constructions that can be modeled as laminated shallow shells with complex planform is applied. The proposed method is based on joint use of R-functions theory, variational methods and Bubnov-Galerkin procedure. It allows reducing an initial nonlinear system of motion equations of a shallow shell to the Cauchy problem. The mathematical formulation of the problem is performed in a framework of the refined first-order theory. The appropriate software is created within POLE-RL program system for polynomial results and using C++ programs for splines. New problems of linear and nonlinear vibrations of laminated shallow shells with cutouts are solved. To confirm reliability of the obtained results their comparison with the ones obtained using spline-approximation and known in literature is provided. Effect of boundary condition on cutout is studied.
  • Ескіз
    Документ
    Applicatin of R-functions Theory to Nonlinear Vibration Problems of Laminated Shallow Shells with Cutouts
    (NTU "KhPI", 2016) Kurpa, Lidiya; Timchenko, Galina; Osetrov, Andrey
    In present work an effective method to research geometrically nonlinear free vibrations of elements of thinwalled constructions that can be modeled as laminated shallow shells with complex planform is applied. The proposed method is based on joint use of R-functions theory, variational methods and Bubnov-Galerkin procedure. It allows reducing an initial nonlinear system of motion equations of a shallow shell to the Cauchy problem. The mathematical formulation of the problem is performed in a framework of the refined first-order theory. The appropriate software is created within POLE-RL program system for polynomial results and using C+ + programs for splines. New problems of linear and nonlinear vibrations of laminated shallow shells with cutouts are solved. To confirm reliability of the obtained results their comparison with the ones obtained using spline-approximation and known in literature is provided. Effect o f boundary condition on cutout is studied.