Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Analysis of Geometrically Nonlinear Vibrations of Functionally Graded Shallow Shells of a Complex Shape
    (Marcílio Alves, 2017) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, T.
    Geometrically nonlinear vibrations of functionally graded shallow shells of complex planform are studied. The paper deals with a power-law distribution of the volume fraction of ceramics and metal through the thickness. The analysis is performed with the use of the R-functions theory and variational Ritz method. Moreover, the Bubnov-Galerkin and the Runge-Kutta methods are employed. A novel approach of discretization of the equation of motion with respect to time is proposed. According to the developed approach, the eigenfunctions of the linear vibration problem and some auxiliary functions are appropriately matched to fit unknown functions of the input nonlinear problem. Application of the R-functions theory on every step has allowed the extension of the proposed approach to study shallow shells with an arbitrary shape and different kinds of boundary conditions. Numerical realization of the proposed method is performed only for one-mode approximation with respect to time. Simultaneously, the developed method is validated by investigating test problems for shallow shells with rectangular and elliptical planforms, and then applied to new kinds of dynamic problems for shallow shells having complex planforms.