Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 6 з 6
  • Ескіз
    Документ
    Методичні вказівки для самостійної роботи за темою "Функції кількох змінних: основні поняття, формули, варіанти контрольних завдань, приклади розв'язку"
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Кириллова, Наталія Олександрівна; Тимченко, Галина Миколаївна; Одинцова, Олена Володимирівна
    Методичні вказівки відповідають силабусам з дисципліни «Вища математика» для спеціальностей 122 «Комп’ютерні науки», 172 «Телекомунікації та радіотехніка», 174 «Автоматизація, комп’ютерно-інтегровані технології та робототехніка», 175 «Інформаційно-вимірювальні технології» та призначені надати допомогу студентам заочної форми навчання при вивченні розділу "Функції кількох змінних", виконанні контрольних завдань з цієї теми та підготовки до іспиту. Вказівки складаються з трьох частин. В першій частині зручно та компактно, у вигляді таблиць, наведені формули та основні поняття теми "Функції кількох змінних". Друга частина містить варіанти контрольних завдань, які охоплюють всі розділи теми: область визначення функції двох змінних, частинні похідні першого та другого порядків, дотична площина та нормаль до поверхні, екстремум функції двох змінних, найбільше та найменше значення функції в замкненій області. Третя частина методичних вказівок містить приклади виконання контрольних завдань з покроковими поясненнями дій, з посиланнями на необхідні формули та теоретичні відомості. Ці методичні вказівки можуть стати у нагоді і студентам очної форми навчання технічних університетів при підготовці до контрольних, колоквіумів, тестів, іспитів.
  • Ескіз
    Документ
    Методичні вказівки для самостійної роботи за темою "Похідна та її застосування: основні поняття, формули, варіанти контрольних завдань, приклади розв'язку"
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Кириллова, Наталія Олександрівна; Одинцова, Олена Володимирівна; Тимченко, Галина Миколаївна
    Методичні вказівки відповідають силабусам з дисципліни «Вища математика» та призначені надати допомогу студентам заочної форми навчання при вивченні розділу "Диференціальне числення функції однієї змінної", виконанні контрольних завдань з цієї теми та підготовки до іспиту. Вказівки складаються з трьох частин. В першій частині зручно, компактно, у вигляді таблиць наведені формули та основні поняття теми "Диференціальне числення функції однієї змінної". Друга частина містить варіанти контрольних завдань, які охоплюють всі розділи теми: диференціювання складних функцій, функцій що задані неявно та параметричному вигляді; завдання на дослідження поведінки функцій та побудову графіків, обчислення границь за правилом Лопіталя, знаходження найбільшого та найменшого значень функції на відрізку, складання рівнянь дотичної та нормалі. Третя частина методичних вказівок містить приклади виконання контрольних завдань з покроковими поясненнями дій, з посиланнями на необхідні формули та теоретичні відомості. Ці методичні вказівки можуть стати у нагоді і студентам очної форми навчання технічних університетів при підготовці до контрольних, колоквіумів, тестів, іспитів.
  • Ескіз
    Документ
    Методичні вказівки для самостійної роботи за темою "Інтеграл та його застосування: основні поняття, формули, варіанти контрольних завдань, приклади розв'язку"
    (Національний технічний університет "Харківський політехнічний інститут", 2024) Кириллова, Наталія Олександрівна; Тимченко, Галина Миколаївна; Одинцова, Олена Володимирівна
    Методичні вказівки відповідають силабусам з дисципліни «Вища математика» та призначені надати допомогу студентам заочної форми навчання при вивченні розділу "Інтегральне числення функції однієї змінної", виконанні контрольних завдань з цієї теми та підготовки до іспиту. Вказівки складаються з трьох частин. В першій частині стисло, у вигляді таблиць наведені формули та основні поняття теми "Інтегральне числення функції однієї змінної", що включають означення, властивості та методи інтегрування невизначеного, визначеного та невласного інтегралів, застосування визначеного інтегралу. Друга частина містить варіанти контрольних завдань, які охоплюють всі розділи теми. Третя частина методичних вказівок містить приклади виконання контрольних завдань з поясненнями дій, з посиланнями на необхідні формули та теоретичні відомості. Ці методичні вказівки можуть стати у нагоді і студентам очної форми навчання технічних університетів при підготовці до контрольних, колоквіумів, тестів, іспитів.
  • Ескіз
    Документ
    Методичнi вказiвки для самостiйної роботи за темою "Аналiтична геометрiя" з навчальної дисциплiни "Вища математика"
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Веретельник, Віктор Володимирович; Тимченко, Галина Миколаївна
    Методичнi вказiвки вiдповiдають силабусу дисциплiни «Вища математика». Головна мета — надати студентам певний мiнiмум теоретичного матерiалу, а також практичних навичок з основних питань для розв’язання задач за темою «Аналiтична геометрiя», допомогти студентам в їх самостiйнiй роботi. У кожному роздiлi наведено достатня кiлькiсть розв’язаних задач та прикладiв, пояснюючих та закрiплюючих теоретичний матерiал. Серед розв’язаних задач чимало таких, якi можна назвати типовими; в будь-якому випадку ознайомлення з ними дозволяє студенту при мiнiмальнiй допомозi з боку викладача оволодiти основними методами розв’язання задач даного роздiлу. Наприкiнцi кожного роздiлу наведено добiрку завдань для самостiйної роботи.
  • Ескіз
    Документ
    Розв'язання задач аналітичної геометрії векторним методом
    (Національний технічний університет "Харківський політехнічний інститут", 2020) Дімітрова-Бурлаєнко, Світлана Дімова; Бурлаєнко, Вячеслав Миколайович; Гиря, Наталія Петрівна
    У навчальному посібнику наведено застосування методів векторної алгебри на прикладах розв’язання геометричних задач. Посібник складений у вигляді практикуму з використання техніки векторних перетворень. Кожна задача сформульована та має розв’язок у вигляді, який не залежить від системи координат. Деякі приклади мають також координатну форму знаходження розв’язку. Посібник містить понад 30 вправ та понад 40 завдань для самостійної роботи з підказками та відповідями. Посібник призначений щодо самостійної роботи студентів інженерних спеціальностей.
  • Ескіз
    Документ
    Elements of linear algebra and analytic geometry
    (ФОП Панов А. М., 2020) Rudnyeva, G. V.
    The book contains theoretical and practical material in linear algebra and analytic geometry in English. Theoretical part presents the proofs of the basic theorems and statements and the derivations of the formulas necessary to solve practical problems. Practical part of the book consists of practical tasks for each topic and variants of individual tasks. It is intended for students of technical universities studying higher mathematics in English, foreign students and teachers of higher mathematics.