Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Нелинейные свободные колебания многослойных пологих оболочек и пластин с вырезами и различными граничными условиями
    (НТУ "ХПИ", 2018) Курпа, Лидия Васильевна; Тимченко, Галина Николаевна; Осетров, Андрей Александрович
    Рассмотрены задачи о геометрически нелинейных свободных колебаниях композитных элементов тонкостенных конструкций, которые моделируются многослойными пологими оболочками со сложной формой плана. Метод решения основан на совместном использовании теории R-функций, вариационных методов, процедуры Бубнова-Галеркина и метода Рунге-Кутта. В качестве иллюстрации эффективности метода решены задачи о колебаниях многослойных пологих оболочек с прямоугольным жестко закрепленным отверстием и различными граничными условиями на внешнем контуре. Для аппроксимации построенного решения использованы степенные полиномы и сплайны. Достоверность разработанного программного обеспечения проверена на тестовых задачах.
  • Ескіз
    Документ
    Dynamical stability and parametrical vibrations of the laminated plates with complex shape
    (Marcílio Alves, 2013) Kurpa, Lidiya; Mazur, Olga; Tkachenko, Victoria
    The problem of nonlinear vibrations and stability analysis for the symmetric laminated plates with complex shape, loaded by static or periodic load in-plane is considered. In general case research of stability and parametric vibrations is connected with many mathematical difficulties. For this reason we propose approach based on application of R-functions theory and varia-tional methods (RFM).The developed method takes into ac-count pre-buckle stress state of the plate. The proposed ap-proach is demonstrated on testing problems and applied to laminated plates with cutouts. The effects of geometrical pa-rameters, load, boundary conditions on stability regions and nonlinear vibrations are investigated.
  • Ескіз
    Документ
    Application of the R-Functions Theory to Problems of Nonlinear Dynamics of Laminated Composite Shallow Shells and Plates: Review
    (NTU "KhPI", 2016) Kurpa, Lidiya
    A review of studies performed using the R-functions theory to solve problems of nonlinear dynamics of plates and shallow shells is presented. The systematization of results and studies for the problems of free and parametric vibrations and for problems of static and dynamic stability is fulfilled. Expansion of the developed original method of discretization for nonlinear movement equations on new classes of nonlinear problems is shown. These problems include researches of vibrations of antisymmetric laminated cylindrical and spherical panels; laminated composite shallow shells with variable thicknesss of the layers; functionally graded (FG) shallow shells and others. The basic issues that arise when using RFM are described. The future prospects of using the theory of R-functions for solving problems of nonlinear dynamics of plates and shallow shells with complex form are formulated. First of all this is an algorithms development and creation of the associated software to apply multi-modes approximations; improvement of approximation tools for nonlinear problems; investigation of the cracked functionally graded shallow shells; FG panels under thermal environments; parametric vibrations, static and dynamical stability of the multilayered and FG plates and shells.