Кафедра "Прикладна математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/4610

Офіційний сайт кафедри http://web.kpi.kharkov.ua/apm

Від 1981 року кафедра має назву "Прикладна математика", первісна назва – кафедра теоретичної й математичної фізики.

Кафедра теоретичної й математичної фізики була заснована в 1947 році. Організатором і першим завідувачем цієї кафедри був відомий вчений-математик, фахівець із конструктивної теорії функцій, член-кореспондент Української Академії наук Наум Ілліч Ахієзер. У 1970 році кафедра цілком чітко взяла курс на дослідження прикладних питань математики, і ще тоді припускалося перейменування кафедри в кафедру "Прикладна математика".

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 1 доктор фізико-математичних наук, 5 кандидатів технічних наук, 4 кандидата фізико-математичних наук; 2 співробітника мають звання професора, 8 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Free vibration analysis of FGM shell with complex planform in thermal environments
    (Wydawnictwo Politechniki Łódzkiej, 2019) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, Tetyana
    Summary. In the present study free vibrations of FGM shallow shells of an arbitrary planform in thermal environment are investigated via R-functions method (RFM). First-order shear deformation theory of shallow shells is employed. Material properties are assumed to be temperature-dependent and expressed as nonlinear functions of temperature. The generic material properties are not only functions of temperature, but also functions of thickness direction. It is supposed that material properties vary through thickness according to a power-law distribution of the constituent’s volume fraction. The developed method is based on the combined applications of the R-functions theory, variational Ritz’s method. A comparison of the obtained results with available ones is carried out for rectangular plates and shallow shells. Vibration of shell panels with complex planform and different boundary conditions including mixed ones are studied. Solution structures and related admissible functions for shells with complex planform have been constructed by the R-functions theory. The effect of the temperature rise, geometry of the shell, material properties and constituent volume fraction index is examined.
  • Ескіз
    Документ
    Nonlinear vibrations of functionally graded shallow shells of a complex planform in thermal environments
    (CongressLine Ltd., Hungary, 2017) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, Tatiana
    Geometrically nonlinear vibrations of FGM shallow shells of an arbitrary planform subjected to thermal environment are investigated with the use of R-functions theory and variational methods. Nonlinear firstorder shear deformation shallow shells are employed. Material properties are assumed to be temperaturedependent and varying along the thickness direction accordingly to Voigt’s law. The developed method is based on the combined applications of R-functions theory, variational Ritz’s method, procedure by Bubnov-Galerkin, and Runge-Kutta’s approach. The effect of the temperature rise, geometry of the shell, and constituent volume fraction index is examined. A comparison of the obtained results with available ones is also carried out for rectangular plates and shallow shells.