Кафедра "Технологія кераміки, вогнетривів, скла та емалей"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7480

Офіційний сайт кафедри http://web.kpi.kharkov.ua/ceramic

Кафедра "Технологія кераміки, вогнетривів, скла та емалей", первісна назва – кафедра силікатів, була створена в 1926 році в складі Харківського Хіміко-технологічного інституту.

Першим завідувачем кафедри (1926 – 1941 рр.) та засновником наукової школи був вчений зі світовим ім'ям, тричі Лауреат Державних премій, Заслужений діяч науки і техніки, академік АН УССР і член-кореспондент АН СССР, доктор технічних наук, професор Петро Петрович Будніков. Підготовка спеціалістів з силікатних технологій була започаткована в 1910 році на кафедрі мінеральної сировини під керівництвом академіка Єгора Івановича Орлова.

Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 5 докторів та 3 кандидата технічних наук; 4 співробітника мають звання професора, 3 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 11
  • Ескіз
    Документ
    Дослідження кінетики спікання та розробка керамічних мас для отримання крупноформатного керамограніту в умовах швидкісного випалу
    (АТ "Український науково-дослідний інститут вогнетривів ім. А. С. Бережного", 2020) Федоренко, Олена Юріївна; Рищенко, Михайло Іванович; Картишев, С. В.; Ященко (Міхеєнко), Лариса Олександрівна; Пітак, Олег Ярославович
    Керамограніт є новим поколінням керамічних плиток, які виготовляють за сучасними технологіями, здатними за короткий час відтворювати процеси, які в природі тривають багато століть. Останнім часом темпи продажів керамограніту на ринку керамічної плитки значно зросли завдяки відмінним технічним і функціональним властивостям в поєднанні з їх високою естетичністю. За експлуатаційними і споживчими характеристиками штучний керамограніт перевищує деякі властивості натурального каменю. Зокрема, він є стійким до абразивних ушкоджень, різких коливань температури та дії хімічних реагентів завдяки щільноспеченій структурі. Метою роботи є дослідження кінетики спікання керамічних мас на основі каолініто-гідрослюдистих глин, що містять як флюсуючий компонент різні гранітоїдні породи вітчизняних родовищ, та розробка сировинних композицій з їх використанням для виготовлення крупноформатних керамогранітних плит. Для вирішення поставленої задачі необхідно обґрунтувати умови проведення експерименту, дослідити властивості зразків, визначити кінетичні параметри процесу спікання та зробити висновки щодо переважаючого механізму масопереносу речовини, який забезпечує отримання щільноспечених керамічних матеріалів, які за рівнем спікання та експлуатаційними властивостями відповідають вимогам до керамогранітних плит класу ІВа згідно з ISO 13006: 2012 Ceramic tiles: Definitions, classification, characteristics and marking.
  • Ескіз
    Документ
    Керамоматричні композиційні матеріали для виготовлення алмазно-абразивного інструменту
    (Публічне акціонерне товариство "Український науково-дослідний інститут вогнетривів ім. А. С. Бережного", 2017) Федоренко, Дмитро Олегович; Федорович, Володимир Олексійович; Федоренко, Олена Юріївна; Дайнеко, Катерина Борисівна
  • Ескіз
    Документ
    Обмазка для виготовлення покриття для захисту графіту від окиснення
    (ДП “Український інститут промислової власності”, 2014) Семченко, Галина Дмитрівна; Шутєєва, Ірина Юріївна; Рожко, Ірина Миколаївна
    Обмазка для виготовлення покриття для захисту графіту від окиснення включає електрокорунд, борвмісну речовину і гідролізований етил силікат. Як зв'язуюче містить етилсилікат, гідролізований дистильованою водою без органічних розчинників, електрокорунд розміром 0,01-1 мкм та 0,01-63 мкм.
  • Ескіз
    Документ
    Композиція для виготовлення покриття для захисту графіту від окиснення
    (ДП “Український інститут промислової власності”, 2010) Шутєєва, Ірина Юріївна; Семченко, Галина Дмитрівна; Руденко, Лариса Вікторівна
    Композиція для виготовлення покриття для захисту графіту від окиснення, що містить вогнетривкий наповнювач системи Al₂O₃-SiO₂, гідролізований етилсилікат та борну кислоту, яка відрізняється тим, що як вогнетривкий наповнювач містить електрокорунд з розміром зерна менше 1 мкм при наступному співвідношенні компонентів, мас. %: електрокорунд – основа ; гідролізований етилсилікат – 9,0-17,5 ; борна кислота (в перерахунку на В₂О₃) – 0,1-0,5.
  • Ескіз
    Документ
    Ангобні покриття для архітектурно-будівельної кераміки різного ступеня спікання
    (Національний технічний університет "Харківський політехнічний інститут", 2019) Тихомирова, Марина Володимирівна; Щукіна, Людмила Павлівна; Ященко (Міхеєнко), Лариса Олександрівна
  • Ескіз
    Документ
    Алмазно-абразивний інструмент на керамічних зв’язках: принципи проектування, отримання та властивості
    (Національний технічний університет "Харківський політехнічний інститут", 2017) Федоренко, Дмитро Олегович; Федорович, Володимир Олексійович; Федоренко, Олена Юріївна; Дайнеко, Є. Б.
  • Ескіз
    Документ
    Мікроструктурне проектування щільного проміжного шару покриття для захисту вуглецевих виробів
    (НТУ "ХПІ", 2010) Шутєєва, Ірина Юріївна; Рищенко, Михайло Іванович; Семченко, Галина Дмитрівна
  • Ескіз
    Документ
    Зміцнена золь-гель композиціями нітридкремнієва кераміка, яка самотвердіє
    (НТУ "ХПІ", 2010) Дудник, Ю. П.; Старолат, Олена Євгенівна; Семченко, Галина Дмитрівна
  • Ескіз
    Документ
    Низькотемпературний електротехнічний фарфор
    (НТУ "ХПІ", 2015) Дайнеко, Катерина Борисівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. Дисертацію присвячено розробці енергоощадної технології фарфору електро-технічного призначення на основі вітчизняної пірофілітової та польовошпатової сировини. При проектуванні складів низькотемпературного електрофарфору використані результати мікрорівневого моделювання поведінки матеріалу при механічних навантаженнях та фізико-хімічних досліджень композицій, що належать елементарному тетраедру A₃S₂–NAS₆–KAS₆–S системи Na₂O–K₂O–Al₂O₃–SiO₂. Область композицій для розробки фарфору з температурою випалу 1200 °С обмежена вмістом компонентів, мас. %: SiO₂ 55÷65, Al₂O₃ 20÷45, K₂O 2÷4, Na₂O 2÷4. Встановлено, що для інтенсифікації спікання та фазоутворення електрофарфору при зниженій температурі випалу необхідним є використання комплексних плавнів та мінералізуючих добавок. На основі досліджень складу та властивостей вітчизняних та зарубіжних польовошпатових і пірофілітових матеріалів обґрунтовано вибір сировини для виробництва низькотемпературного електрофарфору. Встановлено фізико-хімічні закономірності формування низькотемпературного електрофарфору та отримані математичні моделі залежностей його властивостей від складу мас. Розроблено склади і технологічні параметри виготовлення низько-температурного електрофарфору з комплексом високих електрофізичних та механічних властивостей (пробивна напруга Епр = 30 кВ∙мм¯¹, питомий об'ємний електроопір ρV20°С = 4,1·10¹⁴ Ом·см, тангенс кута діелектричних втрат tg δ ·10³= 12,1, міцність на розрив ζрозр = 31 МПа).
  • Ескіз
    Документ
    Низькотемпературний електротехнічний фарфор
    (НТУ "ХПІ", 2015) Дайнеко, Катерина Борисівна
    Дисертація на здобуття наукового ступеня кандидата технічних наук за спеціальністю 05.17.11 – технологія тугоплавких неметалічних матеріалів. – Національний технічний університет "Харківський політехнічний інститут", Харків, 2015 р. Дисертацію присвячено розробці енергоощадної технології фарфору електро-технічного призначення на основі вітчизняної пірофілітової та польовошпатової сировини. При проектуванні складів низькотемпературного електрофарфору використані результати мікрорівневого моделювання поведінки матеріалу при механічних навантаженнях та фізико-хімічних досліджень композицій, що належать елементарному тетраедру A₃S₂–NAS₆–KAS₆–S системи Na₂O–K₂O–Al₂O₃–SiO₂. Область композицій для розробки фарфору з температурою випалу 1200 °С обмежена вмістом компонентів, мас. %: SiO₂ 55÷65, Al₂O₃ 20÷45, K₂O 2÷4, Na₂O 2÷4. Встановлено, що для інтенсифікації спікання та фазоутворення електрофарфору при зниженій температурі випалу необхідним є використання комплексних плавнів та мінералізуючих добавок. На основі досліджень складу та властивостей вітчизняних та зарубіжних польовошпатових і пірофілітових матеріалів обґрунтовано вибір сировини для виробництва низькотемпературного електрофарфору. Встановлено фізико-хімічні закономірності формування низькотемпературного електрофарфору та отримані математичні моделі залежностей його властивостей від складу мас. Розроблено склади і технологічні параметри виготовлення низько-температурного електрофарфору з комплексом високих електрофізичних та механічних властивостей (пробивна напруга Епр = 30 кВ∙мм¯¹, питомий об'ємний електроопір ρV20°С = 4,1·10¹⁴ Ом·см, тангенс кута діелектричних втрат tg δ ·10³= 12,1, міцність на розрив ζрозр = 31 МПа).