Кафедра "Матеріалознавство"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/6927
Офіційний сайт кафедри http://web.kpi.kharkov.ua/mtrlvd
Від 2007 року кафедра має назву "Матеріалознавство", первісна назва – "Металознавство та термічна обробка металів".
Кафедра "Металознавство та термічна обробка металів" створена у 1932 році. Першим її очільником став доктор технічних наук, професор Олександр Володимирович Терещенко.
Кафедра являє собою одну із найстаріших в політехнічному інституті з підготовки інженерів-технологів-дослідників. Своїми науковими дослідженнями. з початку своєї діяльності, кафедра сприяла розвитку та удосконаленню технологій термічної та хіміко-термічної обробки деталей на підприємствах України».
Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 9 кандидатів технічних наук, 3 кандидата фізико-математичних наук, 1 доктор філософії; 1 співробітник має звання професора, 8 – доцента, 1 – старшого наукового співробітника.
Переглянути
Документ Formation of Biphasic State in Vacuum-Arc Coatings Obtained by Evaporation of Ti-Al-Zr-Nb-Y Alloy in the Atmosphere of Nitrogen(Сумской государственный университет, 2014) Beresnev, V. M.; Sobol, O. V.; Toryanik, I. N.; Meylekhov, A. A.; Nyemchenko, U. S.; Turbin, P. V.; Yakushchenko, I. V.; Lisovenko, M. O.By means of X-ray diffraction, transmission and scanning electron microscopy, energy dispersive spectroscopy and indentation methods, the effect of nitrogen atmosphere pressure on composition, structure and hardness of vacuum-arc (Ti-Al-Zr-Nb-Y)N coatings during the deposition process has been studied. The two-phase state of the coating with solid-solution metal component (bcc lattice) and nitride phase (fcc lattice) have been formed. Increasing the pressure of nitrogen atmosphere leads to the increase of nitrogen component in the coating as well as to increase of the ordering regions size, allowing to achieve the hardness of H = 49 GPa at a pressure of P = 0.5 Pa.Документ Formation of Superhard State of the TiZrHfNbTaYN Vacuum–Arc High-Entropy Coating(Allerton Press, Inc., 2018) Beresnev, V. M.; Sobol, O. V.; Andreev, A. A.; Gorban, V. F.; Klimenko, S. A.; Litovchenko, S. V.; Kovteba, D. V.; Meilekhov, A. A.; Postelnyk, A. A.; Nemchenko, U. S.; Novikov, V. Yu.; Maziilin, B. A.Complex studies of the formation of the superhard state in the TiZrHfNbTaYN vacuum-arc high-entropy coating were carried out. Based on the approach of the structural surface engineering, the regularities of the formation of the triads composition–structure–physico-mechanical properties depending on the supplied potential displacement are established. It is shown that the increase of Ub at the formation of a coating leads to a decrease of the relative content of a light (Ti) and increase of a heavy (Ta, Hf) metal components, which is determined by radiationally stimulated processes in a near surface region at the deposition. The formation of the single-phase state (based on the fcc of metal lattice) in the range Ubfrom –50 to –250 V and revealed the formation of the preferred orientation of the crystallites with the axis [111], which is perpendicular to the growth plane. The increase of the perfection of the texture with the [111] axis with increasing Ub is accompanied with an increase of the coatings hardness, which makes it possible to achieve the superhard state (H = 40.2 GPa) at Ub = –250 V.Документ Single layer and multilayer vacuum-arc coatings based on the nitride TiAlSiYN: composition, structure, properties(2017) Beresnev, V. M.; Sobol, O. V.; Pogrebnyak, A. D.; Lytovchenko, S. V.; Ivanov, O. N.; Nyemchenko, U. S.; Srebniuk, P. А.; Meylekhov, A. A.; Barmin, A. E.; Stolbovoy, V. A.; Novikov, V. Yu.; Mazilin, B. A.; Kritsyna, Е. V.; Serenko, T. A.; Malikov, L. V.Using high-technological vacuum-arc evaporation in the atmosphere of nitrogen with ion bombardment, single- and multilayer coatings based on TiAlSiYN with high mechanical characteristics were obtained: hardness of the coatings reached 49.5 GPA, resistance to wear, with the value of the critical point LC5 reaching 184.92 N. The peculiarities of radiation-induced effect at applying bias potential Ub were found: formation of nitride coatings based on fcc metallic lattice with the preferred orientation of crystallites with the texture axis [111], as well as simultaneous growth of hardness. Hardness of both single- and multilayer coatings increases by 40-50 % at the increase of Ub from 50 to 200 V. Formation of silicon-containing layers of TiAlSiYN during the deposition contributes to reaching increased hardness, which, in the case of single-layer coating obtained at Ub = -200 V is 49.5 GPA, which corresponds to super hard state. The mechanisms of structure formation, defining the resulting mechanical characteristics of single- and multi-layer coatings based on TiAlSiYN nitride have been discussed.Документ Structure and mechanical properties of nitride multilayer systems on the basis of high entropy alloys and transition metals of group VI(2016) Nyemchenko, U. S.; Beresnev, V. M.; Sobol, O. V.; Lytovchenko, S. V.; Stolbovoy, V. A.; Novikov, V. Ju.; Meylekhov, A. A.; Postelnyk, A. A.; Kovaleva, M. G.The influence of technological parameters of obtaining on the possibilities of structural engineering and mechanical properties of multilayer compositions of the layers of nitrides of high entropy alloy Ti-Zr-Nb-Ta-Hf and of transition metal (Group IV) nitrides has been analysed. It is shown that with the bias potential Ub lesser than -150 V was applied to the substrate during deposition, a two-phase state with the preferred orientation of the crystallites can be reached in multilayer coatings with the thickness of the layers of 50 nm. This leads to high hardness (up to 44 GPa) and to high adhesion strength (critical load up to 125 N) as well as to low wear (with a counterbody Al ₂O₃, and with steel Ac100Cr6). High-temperature annealing (700 ⁰C) of such coatings leads to enhanced texture as a result of atomic ordering, which is accompanied by increasing of hardness up to 59 GPa. The supply of bias potential exceeding 150 V, followed by a substantial mixing at the interphase boundary results in disorientation and improves dispersion of the crystallites, reduces hardness and wear resistance. High temperature annealing of such structures leads to reduction of their mechanical properties.Документ Structure and Properties of Vacuum Arc Single-Layer and Multiperiod Two-Layer Nitride Coatings Based on Ti(Al):Si Layers(Sumy State University, 2017) Beresnev, V. M.; Sobol, O. V.; Pogrebnjak, A. D.; Lytovchenko, S. V.; Stolbovoy, V. A.; Srebniuk, P. A.; Novikov, V. Ju.; Doshchechkina, I. V.; Meylehov, A. A.; Postelnyk, A. A.; Nyemchenko, U. S.; Mazylin, B. A.; Kruhlova, V. V.The paper provides an analysis of impact of deposition conditions on structural and phase state and thermal stability of vacuum arc coatings based on Ti(Al):Si layers. We studied single-phase single-layer coatings, and multiperiod bilayer coatings with second phase nitride interlayers of one of the following three metals: Mo, Cr or Zr. It was established that hexagonal and cubic lattices may form in the coatings when transition to the cubic lattice occurs with Al content of about 25 at. %. Presence of second nanoscale (7-8 nm) layers in bilayer multiperiod compositions, which consist of one nitride from CrNx, MoNx or ZrNx group, does not change the type of lattice in [Ti(Al):Si]Nx layers. Also, an fcc lattice with a strong or weak texture [111] forms in CrNx and ZrNx layers, while crystallites with hexagonal lattice form in MoNx layers. High-temperature annealing at 700 °С during 40 minutes leads to a significant (by 23 % or up to H 47.56 GPa) increase in microhardness of coating of the [Ti(Al)]Nx/ZrNy system due to formation of a nano-size structure with an average size of crystallites of 3.6 nm in [Ti(Al)]Nx layers, and 6.3 nm in ZrNx layers.Документ Structure, Substructure, Hardness and Adhesion Strength of Multiperiod Composite Coatings MoN / CrN(Sumy State University, 2015) Grankin, S. S.; Beresnev, V. M.; Sobol, O. V.; Stolbovoy, V. A.; Novikov, V. Yu.; Lytovchenko, S. V.; Nyemchenko, U. S.; Meylekhov, A. A.; Kovaleva, M. G.; Postelnyk, A. A.; Toryanik, I. N.A comprehensive study of the influence of the thickness of the layers, Us and PN on the structural engineering to obtain high mechanical properties in multilayer composite MoN / CrN vacuum-arc coatings has been conducted by means of scanning electron microscopy with energy analysis, X-ray diffraction studies microindentation and scratch testing methods. It has been determined that in the studied Torr, the content of nitrogen in the coatings varies from 6.3 to 33 at. %, which leads even at the greatest nitrogen content to the formation of lower phase by nitrogen and isostructural CrN with the vacant sites in the nitrogen sublattice. The increase of thickness of the layers applied on the substrate in a stationary state promotes the increase of nitrogen content. Along with this, the lowest microdeformation and the average size of crystallites are formed at Ub = – 300 V, which defines the achievement of greater hardness of 35 GPa and high adhesion strength, which resists the destruction, Lc5 = 187.6 N.Документ The use of plasma-based deposition with ion implantation technology to produce superhard molybdenum-based coatings in a mixed (C2H2+N2) atmosphere(2018) Sobol, O. V.; Andreev, A. A.; Mygushchenko, R. P.; Beresnev, V. M.; Meylekhov, A. A.; Postelnyk, A. A.; Kravchenko, S. A.; Tabaza, Taha. A.; Al-Qawabah, Safwan M.; Al-Qawabeha, Ubeidulla F.; Stolbovoy, V. A.; Serdyuk, I. V.; Kolesnikov, D. A.; Kovaleva, M. G.The influence of the pressure of a mixed gaseous atmosphere (80%C2H2+20%N2) and the supply of a high-voltage negative potential in a pulsed form on the elemental and phase composition, structure and physico-mechanical characteristics of the vacuum-arc molybdenum-based coatings. It is shown that in the temperature deposition range 400…550 °С as a result of plasma-chemical reactions, the maximum nitrogen atoms content in the coating does not exceed 1.5 at.%. It is found, that at the maximum pressure of РC2H2+N2= 2.3∙10-1 Pа when the γ-MoC phase is formed, an superhard state of 50.5 GPa (at a constant potential -200 V, without additional high-voltage pulse action) and 51.1 GPa (at a constant potential -200 V, with additional high-voltage pulse action) is reached.