Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 3 з 3
  • Ескіз
    Документ
    Гнучкі сонячні елементи на основі базових шарів СdТe, отриманих методом магнетроного розпилення
    (Сумський державний університет, 2017) Хрипунов, Геннадій Семенович; Копач, Галина Іванівна; Зайцев, Роман Валентинович; Доброжан, Андрій Ігорович; Харченко, Микола Михайлович
    Досліджено кристалічну структуру та оптичні властивості полікристалічних шарів CdTe, отриманих методом нереактивного магнетронного розпилення при постійному струмі на поліімідних плівках. В результаті аналітичної обробки світлових вольтамперних характеристик отримані значення вихідних параметрів гнучких тонкоплівкових сонячних елементів на їх основі. Показано, що проведення "хлоридної" обробки шарів CdTe, отриманих при Тп < 300 °C, сприяє фазовому переходу в’юртцит-сфалерит та знижує коефіцієнт пропускання плівок на 20-40 % в інфрачервоній області спектру, не змінюючи значення ширини забороненої зони CdTe. Охолодження гетеросистеми ITO/CdS до кімнатної температури перед нанесенням базового шару CdTe, винесення на повітря та послідуючий нагрів до необхідної температури підкладки у вакуумі призводять до зростання значень напруги холостого ходу та коефіцієнту корисної дії досліджених гнучких сонячних елементів ITO/CdS/CdTe/Cu/Au.
  • Ескіз
    Документ
    Синтез кестеритних шарів для тонкоплівкових сонячних елементів нової генерації
    (НТУ "ХПІ", 2014) Сокол, Євген Іванович; Клочко, Наталя Петрівна; Кривошеєв, Сергій Юрійович; Момотенко, Олександра Віталіївна; Любов, Віктор Миколайович; Копач, Володимир Романович; Кіріченко, Михайло Валерійович; Зайцев, Роман Валентинович; Волкова, Неоніла Дмитрівна
    Кестерит Cu₂ZnSnS₄ є прямозонним напівпровідником з оптимальною для перетворення сонячної енергії шириною забороненої зони, який містить доступні хімічні елементи і тому визнаний перспективним для масового виробництва тонкоплівкових сонячних елементів. Визначено найбільш сприятливі послідовності і атомні співвідношення компонентів електрохімічно осаджених прекурсорів, досліджено параметри кристалічної структури кестеритів, синтезованих в процесі сульфурізації прекурсорів.
  • Ескіз
    Документ
    Напівпровідникові шари сульфіду олова для тонкоплівкових сонячних елементів
    (НТУ "ХПІ", 2014) Сокол, Євген Іванович; Клочко, Наталя Петрівна; Кривошеєв, Сергій Юрійович; Момотенко, Олександра Віталіївна; Любов, Віктор Миколайович; Копач, Володимир Романович; Кіріченко, Михайло Валерійович; Зайцев, Роман Валентинович; Волкова, Неоніла Дмитрівна
    Представлена економічна і придатна для використання в масовому виробництві методика отримання моносульфіду олова з орторомбічною структурою герценбергіта шляхом сульфурізаціі в парах сірки плівок металу, електроосаджених зі стандартного електроліту олов'янування. Синтезований полікристалічний матеріал SnS є електронним напівпровідником з оптимальними для використання в сонячних елементах шириною забороненої зони і коефіцієнтом оптичного поглинання.