Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Влияние наноразмерной прослойки оксида олова на эффективность фотоэлектрических процессов в пленочных солнечных элементах на основе теллурида кадмия
    (Сумской государственный университет, 2015) Хрипунов, Геннадий Семенович; Пирогов, Александр Викторович; Кудий, Дмитрий Анатольевич; Зайцев, Роман Валентинович; Хрипунова, Алина Леонидовна; Геворкян, В. А.; Гладышев, П. П.
    Было исследовано влияние толщины наноразмерной прослойки на эффективность фотоэлектрических процессов в солнечных элементах (СЭ) ITO/SnO₂/CdS/CdTe/Cu/Au, сформированных на различных подложках. Для приборных структур, сформированных на стеклянных подложках, максимальная эффективность 11,4 % достигается при толщине слоя оксида олова 80 нм. Для гибких солнечных элементов, сформированных на полиимидных пленках, максимальная эффективность 10,8 % наблюдается при толщине слоя оксида олова 50 нм. В работе обсуждаются физические механизмы наблюдаемых отличий в КПД.
  • Ескіз
    Документ
    Пленочные солнечные элементы ITO/SnO₂/CdS/CdTe/Cu/Au
    (Харківський національний університет ім. В. Н. Каразіна, 2014) Хрипунов, Геннадий Семенович; Пирогов, Александр Викторович; Ковтун, Назар Анатольевич; Хрипунова, Алина Леонидовна; Кудий, Дмитрий Анатольевич
    C целью оптимизации конструктивно-технологических решений фронтальных электродов были проведены сопоставительные исследования выходных параметров и световых диодных характеристик пленочных солнечных элементов ITO/CdS/CdTe/Cu/Au и SnO₂:F/CdS/CdTe/Cu/Au. Установлено, что большее напряжение и больший фактор заполнения солнечных элементов при использовании в конструкции пленок SnO₂:F обусловлены меньшими значениями плотности диодного тока насыщения и последовательного сопротивления, что обусловлено устойчивостью кристаллической структуры и электрических свойств этих пленок к "хлоридной" обработке базового слоя при изготовлении приборной структуры. В тоже время солнечные элементы с фронтальным электродом ITO имеют большую плотность тока короткого замыкания, что обусловлено большим средним коэффициентом пропускания слоев ITO. Использование в конструкции фронтальных контактов ITO наноразмерных слоев SnO₂ позволяет увеличить эффективность солнечных элементов на основе CdS/CdTe до 11,4 % за счет стабилизации кристаллической структуры и электрических свойств пленок ITO, а также возможности снижения толщины слоя сульфида кадмия без шунтирования приборной структуры.