Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 11
  • Ескіз
    Документ
    Effect of extraterrestrial solar UV radiation on structure and properties of ZnO films obtained by wet chemical methods
    (Vasyl Stefanyk Precarpatian National University, 2019) Klochko, N. P.; Khrypunova, I. V.; Klepikova, K. S.; Petrushenko, S. I.; Kopach, V. R.; Zhadan, D. O.; Khrypunova, A. L.; Dukarov, S. V.; Lyubov, V. M.; Kirichenko, M. V.
  • Ескіз
    Документ
    Superhydrophobic textiles with fibers coated by nanosctructured indium-doped zinc oxide layers
    (Kamianets-Podіlskyi National Ivan Ohiienko University, 2020) Klochko, N. P.; Khrypunova, I. V.; Klepikova, K. S.; Kopach, V. R.; Zhadan, D. O.; Petrushenko, S. I.; Dukarov, S. V.; Lyubov, V. M.; Kirichenko, M. V.
  • Ескіз
    Документ
    Nanostructured СuI thin films on biodegradable nanocellulose flexible substrates for UV-shielding applications
    (Kamianets-Podіlskyi National Ivan Ohiienko University, 2020) Klochko, N. P.; Barbash, V. A.; Klepikova, K. S.; Kopach, V. R.; Yashchenko, O. V.; Zhadan, D. O.; Petrushenko, S. I.; Dukarov, S. V.; Sukhov, V. M.; Khrypunova, A. L.
  • Ескіз
    Документ
    Wettability of the cotton and polyester tissues coated by nanostructured indium-doped zinc oxide layers
    (Ivan Franko National University of Lviv, 2020) Klochko, N. P.; Khrypunova, I. V.; Klepikova, K. S.; Kopach, V. R.; Zhadan, D. O.; Petrushenko, S. I.; Dukarov, S. V.; Lyubov, V. M.; Kirichenko, M. V.; Khrypunova, A. L.
  • Ескіз
    Документ
    Development of Kesterite Based Heterojunction for Photovoltaics Application
    (Institute of Electrical and Electronics Engineers, 2016) Lukianova, O. V.; Klochko, N. P.; Kopach, V. R.; Lyubov, V. M.
  • Ескіз
    Документ
    Flexible thermoelectric module based on zinc oxide thin film grown via SILAR
    (2021) Klochko, N. P.; Klepikova, K. S.; Khrypunova, I. V.; Zhadan, D. O.; Petrushenko, S. I.; Kopach, V. R.; Dukarov, S. V.; Sukhov, V. M.; Kirichenko, M. V.; Khrypunova, A. L.
    In this work, we used the low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) for a deposition of the nanostructured undoped and indium doped (ZnO and ZnO:In) thin films on flexible polyimide (PI) substrates for their use as cheap non-toxic thermoelectric materials in the flexible thermoelectric modules of planar type to power up portable and wearable electronics and miniature devices. The use of a zincate solution in the SILAR method allows to obtain ZnO:In film, which after post-growth annealing at 300 ◦C has low resistivity ρ ≈ 0.02 Ω m, and high Seebeck coefficient 147 μV/K and thermoelectric power factor at near-room temperatures. As evidence of the operability of the manufactured films as the basis of the TE device, we have designed and tested experimental lightweight thin-film thermoelectric module. This TE module is able to produce specific output power 0.8 μW/m2 at ΔT = 50 K.
  • Ескіз
    Документ
    Electronic Parameters of a New Thin Film Composition for Kesterite Solar Cell
    (Прикарпатський національний університет імені Василя Стефаника, 2017) Klochko, N. P.; Khrypunov, G. S.; Kopach, V. R.; Lukianova, O. V.; Lyubov, V. M.; Kirichenko, M. V.
  • Ескіз
    Документ
    Nanostructured Semiconductor Heterostructures for Ultraviolet Sensors, Solar Cells and Semitransparent Diodes Manufactured by Chemical and Electrochemical Methods
    (Прикарпатський національний університет імені Василя Стефаника, 2017) Klochko, N. P.; Khrypunov, G. S.; Kopach, V. R.; Klepikova, K. S.; Lukianova, O. V.; Korsun, V. E.; Lyubov, V. M.; Zaitsev, R. V.; Kirichenko, M. V.
  • Ескіз
    Документ
    Near Ultraviolet Photodetector Based on Electrodeposited in Pulse Mode Zinc Oxide Arrays
    (Institute of Electrical and Electronics Engineers, 2016) Klepikova, K. S.; Klochko, N. P.; Kopach, V. R.; Khrypunov, G. S.; Lubov, V. M.; Zaitsev, R. V.; Kirichenko, M. V.
  • Ескіз
    Документ
    Double-layer ITO/Al back surface reflector for single-junction silicon photoconverters
    (Scientific and Technological Corporation "Institute for Single Crystals", 2008) Kopach, V. R.; Kirichenko, M. V.; Shramko, S. V.; Zaitsev, R. V.
    It has been shown that to increase the efficiency and manufacturability of single-crystal silicon photovoltaic solar energy converters (Si-PVC) with 180-200 μm thick base crystals having a polished photoreceiving surface and double-layer back surface reflector (BSR) consisting of a transparent oxide and aluminum layers, a conductive transparent indium-tin oxide (ITO) layer of 0.25 μm interference thickness is to be used as the nonmetallic BSR layer. It provides the ITO/Al BSR reflection coefficient in the range of 85 < R < 96 % for solar radiation photoactive component incident the Si-PVC back surface at substantially zero contribution of ITO layer resistance to the device series resistance. In the case of Si-PVC with inverted pyramid type texture of crystal photoreceiving surface at which the specificity of light distribution in the crystal causes total reflection of radiation from Si/ITO interface, the ITO layer thickness should be experimentally optimized in the 1-2 μm range independently of base crystal thickness to minimize the photoactive radiation losses and ITO layer resistance.