Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Nanostructured Thermoelectric Thin Films Obtained by Wet Chemical Synthesis
    (Sumy State University, 2017) Klochko, N. P.; Kopach, V. R.; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Otchenashko, О. N.; Zhadan, D. O.; Kirichenko, M. V.; Nikitin, V. О.; Maslak, M. O.; Khrypunova, A. L.
    Nanostructured pristine lead sulfide and copper iodide semiconductor films as well as copper doped lead sulfide and iodine-enriched copper iodide layers were obtained on solid and flexible substrates via Chemical Bath Deposition (CBD) and Successive Ionic Layer Adsorption and Reaction (SILAR) methods. Crystal structures, optical, electric and thermoelectric properties of the layers have been studied. It was shown that the obtained films deposited on glass and mica substrates are smooth and continuous, have polycrystalline structures of the corresponding bulk semiconductors with grain sizes of several tens of nanometers. Investigations of the optical properties revealed, that their band gaps are characteristic for the corresponding bulk materials. All obtained semiconductor layers are p-type of conductivity. The resistivity of the lead sulphide films were reduced noticeably by means of their doping with copper. Iodination of the copper iodide films convert them into degenerate semiconductors. Investigations of the temperature dependent resistivity, the Seebeck coefficients and power factors confirmed that the obtained materials are promising for their use in thin-film solar thermoelectric generators with the aim of solar heat transforming into electricity.
  • Ескіз
    Документ
    Nanostructured ZnO arrays fabricated via pulsed electrodeposition and coated with Ag nanoparticles for ultraviolet photosensors
    (Сумський державний університет, 2018) Klochko, N. P.; Klepikova, K. S.; Petrushenko, S. I.; Kopach, V. R.; Khrypunov, G. S.; Korsun, V. E.; Lyubov, V. M.; Kirichenko, M. V.; Dukarov, S. V.; Khrypunova, A. L.
    Nanostructured one-dimensional (1-D) ZnO arrays fabricated via pulsed electrodeposition and coated with Ag nanoparticles are researched with the aim of their using in the ultraviolet (UV) photosensors. The results of the crystal structure investigations showed that the pulsed electrodeposited zinc oxide arrays are polycrystalline in nature and matching with hexagonal wurtzite modification of ZnO. To enhance its UV photosensitivity, the silver nanoparticles (AgNPs) with different shape and an average size of 60 nm, as well as 300-500 nm long Ag nanorods with ~30 nm diameter, are precipitated mainly on the (002), (101) and (100) ZnO planes. Study of electrical properties and electronic parameters of the 1-D ZnO and Ag/ZnO nanocomposites using a current-voltage and capacity-voltage characteristics identified the important role of the high double Schottky barriers at the ZnO intergrain boundaries for the creation of great UV photo-sensitivity. It is proved that through monitoring the amount of AgNPs on the ZnO surface the electrical properties and electronic parameters of the Ag/ZnO nanocomposites, and consequently, the output parameters of the UV photosensors can be controlled.