Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 14
  • Ескіз
    Документ
    Technology Bases of Combined Photovoltaic Systems
    (2023) Zaitsev, Roman; Kirichenko, Mykhailo; Minakova, Kseniia; Khrypunov, Gennadiy; Nikitin, Viktor
    This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
  • Ескіз
    Документ
    Electronic Parameters of a New Thin Film Composition for Kesterite Solar Cell
    (Прикарпатський національний університет імені Василя Стефаника, 2017) Klochko, N. P.; Khrypunov, G. S.; Kopach, V. R.; Lukianova, O. V.; Lyubov, V. M.; Kirichenko, M. V.
  • Ескіз
    Документ
    Automation of Quasi-Closed Space Method Based on ARM Microcontroller
    (Institute of Electrical and Electronics Engineers, 2016) Zaitsev, R. V.; Kirichenko, M. V.; Prokopenko, D. S.; Zaitseva, L. V.
  • Ескіз
    Документ
    Near Ultraviolet Photodetector Based on Electrodeposited in Pulse Mode Zinc Oxide Arrays
    (Institute of Electrical and Electronics Engineers, 2016) Klepikova, K. S.; Klochko, N. P.; Kopach, V. R.; Khrypunov, G. S.; Lubov, V. M.; Zaitsev, R. V.; Kirichenko, M. V.
  • Ескіз
    Документ
    Hybrid thermophotoenergy module with thin-film solar cells
    (Taras Shevchenko National University of Kyiv, 2016) Zaitsev, R. V.; Zaitseva, L. V.; Kirichenko, M. V.
  • Ескіз
    Документ
    Investigation the parameters of multijunction single crystal silicon solar cells with vertical diode cells test samples
    (Institute for Radiophysics and Electronics of the National academy of sciences of Ukraine, 2014) Polezhaeva, O. V.; Zaitsev, R. V.; Kopach, V. R.; Kirichenko, M. V.
  • Ескіз
    Документ
    Attestation of solar cells by back EMF method
    (Institute for Radiophysics and Electronics of the National academy of sciences of Ukraine, 2014) Lobatenko, D. D.; Kirichenko, M. V.; Zaitsev, R. V.; Kopach, V. R.
  • Ескіз
    Документ
    Development and approbation the automatization complex current-voltage characteristics measurement
    (Institute for Radiophysics and Electronics of the National academy of sciences of Ukraine, 2014) Prokopenko, D. S.; Zaitsev, R. V.; Kirichenko, M. V.
  • Ескіз
    Документ
    Фазовые превращения при металлизации Ag−In и сращивании вертикальных диодных ячеек многопереходных солнечных элементов
    (Наука, 2013) Клочко, Наталья Петровна; Хрипунов, Геннадий Семенович; Волкова, Неонила Дмитриевна; Копач, Владимир Романович; Любов, Виктор Николаевич; Кириченко, Михаил Валерьевич; Момотенко, Александра Витальевна; Харченко, Н. М.; Никитин, В. А.
    Исследованы условия сращивания кремниевых многопереходных солнечных элементов с вертикальными p−n-переходами с помощью припоя системы Ag−In. Изучались композиции из электроосажденных пленок индия на посеребренных методом трафаретной печати кремниевых пластинах и изготовленные путем послойного электрохимического осаждения пленки серебра и индия на поверхности посеребренных в вакууме кремниевых вертикальных диодных ячеек. Исследование условий электрохимического осаждения, структуры и морфологии поверхности полученных слоев показало, что для гарантированного сращивания допустимо использование 8-минутной термообработки при 400◦C под давлением стопки металлизированных кремниевых пластин, однако соотношение толщин слоев индия и серебра не должно превышать 1 : 3. При выполнении данного условия припой после сращивания пластин имеет структуру InAg3 (или InAg3 с примесью фазы Ag), благодаря чему температура плавления спая превышает 700◦C, что гарантированно обеспечивает функционирование таких солнечных элементов в условиях концентрированного освещения.
  • Ескіз
    Документ
    Double-layer ITO/Al back surface reflector for single-junction silicon photoconverters
    (Scientific and Technological Corporation "Institute for Single Crystals", 2008) Kopach, V. R.; Kirichenko, M. V.; Shramko, S. V.; Zaitsev, R. V.
    It has been shown that to increase the efficiency and manufacturability of single-crystal silicon photovoltaic solar energy converters (Si-PVC) with 180-200 μm thick base crystals having a polished photoreceiving surface and double-layer back surface reflector (BSR) consisting of a transparent oxide and aluminum layers, a conductive transparent indium-tin oxide (ITO) layer of 0.25 μm interference thickness is to be used as the nonmetallic BSR layer. It provides the ITO/Al BSR reflection coefficient in the range of 85 < R < 96 % for solar radiation photoactive component incident the Si-PVC back surface at substantially zero contribution of ITO layer resistance to the device series resistance. In the case of Si-PVC with inverted pyramid type texture of crystal photoreceiving surface at which the specificity of light distribution in the crystal causes total reflection of radiation from Si/ITO interface, the ITO layer thickness should be experimentally optimized in the 1-2 μm range independently of base crystal thickness to minimize the photoactive radiation losses and ITO layer resistance.