Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 10 з 52
  • Ескіз
    Документ
    Technology Bases of Combined Photovoltaic Systems
    (2023) Zaitsev, Roman; Kirichenko, Mykhailo; Minakova, Kseniia; Khrypunov, Gennadiy; Nikitin, Viktor
    This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
  • Ескіз
    Документ
    Фізика напівпровідникових приладів
    (2023) Кіріченко, Михайло Валерійович; Зайцев, Роман Валентинович; Мінакова, Ксенія Олександрівна
    Оскільки з фізики напівпровідників є велика кількість літератури, у розділі з відповідними посиланнями конспективно викладено ті відомості, які будуть використані під час аналізу властивостей напівпровідникових приладів, і навіть дані необхідні визначення. Основна увага приділена напівпровідниковим матеріалам, які широко застосовуються для виготовлення електронних приладів - моноатомним напівпровідникам кремнію (Si) та германію (Ge), а також напівпровідниковим сполукам А3В5, з яких найбільше освоєно арсенід галію (GaAs). Математичні формули максимально спрощені з урахуванням специфіки цих матеріалів, і навіть умов експлуатації виробів (обмежений температурний спектр). Далі в посібнику наведений матеріал буде використаний для необхідних посилань, щоб не перевантажувати викладками основний текст.
  • Ескіз
    Документ
    Квантова електроніка
    (ФОП Середняк Т. К., 2023) Мінакова, Ксенія Олександрівна; Зайцев, Роман Валентинович; Кіріченко, Михайло Валерійович
    Квантова електроніка і оптоелектроніка достатньо молоді науки. Квантова електроніка вивчає поглинання і випромінювання енергії атомів і молекул речовини при переходах з одного енергетичного рівня на інший.
  • Ескіз
    Документ
    Гетероструктура для обращенного диода на основе электроосажденного в импульсном режиме наномассива оксида цинка и изготовленной методом SILAR пленки иодида меди
    (Наука, 2018) Клочко, Наталья Петровна; Копач, Владимир Романович; Хрипунов, Геннадий Семенович; Корсун, Валерия Евгеньевна; Любов, Виктор Николаевич; Жадан, Дмитрий Олегович; Отченашко, А. Н.; Кириченко, Михаил Валерьевич; Хрипунов, Максим Геннадиевич
    В качестве основы перспективной конструкции обращенного диода сформирована гетероструктура на базе массива наностержней оксида цинка и наноструктурированной пленки иодида меди. Проведено исследование влияния режимов осаждения методом SILAR и последующего иодирования пленок CuI на гладких подложках из стекла, слюды и FTO, а также на поверхности электроосажденных наноструктурированных массивов оксида цинка, на их структуру, электрические и оптические свойства. Выявлена связь изменений, наблюдаемых в структуре и свойствах этого материала, с имеющимися в нем изначально и создаваемыми в процессе иодирования точечными дефектами. Обнаружено, что причиной и условием формирования гетероструктуры обращенного диода на основе электроосажденного в импульсном режиме наномассива оксида цинка и изготовленной методом SILAR пленки иодида меди является формирование вырожденного полупроводника p+-CuI путем избыточного иодирования слоев этого наноструктурированного материала через его развитую поверхность. Впервые изготовлена барьерная гетероструктура n-ZnO/p+-CuI с вольт-амперной характеристикой обращенного диода, коэффициент кривизны которой γ = 12 В−1 подтверждает ее добротность.
  • Ескіз
    Документ
    Зміна параметрів монокристалічних кремнієвих фотоперетворювачів під дією неоднорідного магнітного поля
    (Кременчуцький національний університет ім. Михайла Остроградського, 2011) Зайцев, Роман Валентинович; Копач, Володимир Романович; Самофалов, Володимир Миколайович; Кіріченко, Михайло Валерійович; Хрипунов, Геннадій Семенович
  • Ескіз
    Документ
    Мінімізація кутової залежності вихідних параметрів вертикальних діодних комірок для багатоперехідних кремнієвих фотоелектричних перетворювачів
    (Кременчуцький національний університет ім. Михайла Остроградського, 2011) Кіріченко, Михайло Валерійович; Зайцев, Роман Валентинович; Копач, Володимир Романович; Панін, А. І.; Хрипунов, Геннадій Семенович
  • Ескіз
    Документ
    Фотоенергетичний модуль нової генерації
    (Кременчуцький національний університет ім. Михайла Остроградського, 2011) Сокол, Євген Іванович; Копач, Володимир Романович; Зайцев, Роман Валентинович; Кіріченко, Михайло Валерійович; Меріуц, Андрій Володимирович
  • Ескіз
    Документ
    Development and new application of single-crystal silicon solar cells
    (2011) Khrypunov, G. S.; Kopach, V. R.; Kirichenko, M. V.; Zaitsev, R. V.
  • Ескіз
    Документ
    Flexible thermoelectric module based on zinc oxide thin film grown via SILAR
    (2021) Klochko, N. P.; Klepikova, K. S.; Khrypunova, I. V.; Zhadan, D. O.; Petrushenko, S. I.; Kopach, V. R.; Dukarov, S. V.; Sukhov, V. M.; Kirichenko, M. V.; Khrypunova, A. L.
    In this work, we used the low temperature solution growth Successive Ionic Layer Adsorption and Reaction (SILAR) for a deposition of the nanostructured undoped and indium doped (ZnO and ZnO:In) thin films on flexible polyimide (PI) substrates for their use as cheap non-toxic thermoelectric materials in the flexible thermoelectric modules of planar type to power up portable and wearable electronics and miniature devices. The use of a zincate solution in the SILAR method allows to obtain ZnO:In film, which after post-growth annealing at 300 ◦C has low resistivity ρ ≈ 0.02 Ω m, and high Seebeck coefficient 147 μV/K and thermoelectric power factor at near-room temperatures. As evidence of the operability of the manufactured films as the basis of the TE device, we have designed and tested experimental lightweight thin-film thermoelectric module. This TE module is able to produce specific output power 0.8 μW/m2 at ΔT = 50 K.
  • Ескіз
    Документ
    Electronic Parameters of a New Thin Film Composition for Kesterite Solar Cell
    (Прикарпатський національний університет імені Василя Стефаника, 2017) Klochko, N. P.; Khrypunov, G. S.; Kopach, V. R.; Lukianova, O. V.; Lyubov, V. M.; Kirichenko, M. V.