Кафедра "Мікро- та наноелектроніка"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/2787

Офіційний сайт кафедри http://web.kpi.kharkov.ua/mne

Від 2022 року (НАКАЗ 31 ОД від 21.01.2022 року) кафедра має назву "Мікро- та наноелектроніка", первісна назва – "Фізичне матеріалознавство для електроніки та геліоенергетики". З 1.09.2024 р. (НАКАЗ 303 ОД від 28.08.2024 року ) кафедра "Радіоелектроніка" приєднана до кафедри "Мікро- та наноелектроніка"

Кафедра "Фізичне матеріалознавство для електроніки та геліоенергетики" була заснована у 1988 році з ініціативи Заслуженого діяча науки та техніки України, доктора фізико-математичних наук, профессора Бойка Бориса Тимофійовича.

За час існування кафедри в галузі електроніки на основі тонкоплівкових моделей були розроблені: нові технологічні методи виготовлення надійних конденсаторів на основі танталу та ніобію, елемент захисту електронних схем від імпульсних перепадів напруги, що не має світових аналогів, резистивний газовий датчик адсорбційно-напівпровідникового типу для аналізу навколишнього середовища тощо.

Кафедра входить до складу Навчально-наукового інституту комп'ютерного моделювання, прикладної фізики та математики Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 1 доктор технічних наук, 4 кандидата технічних наук, 2 кандидата фізико-математичних наук; 3 співробітника мають звання доцента, 2 – старшого наукового співробітника, 1 – старшого дослідника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Управление гидрофобностью наноструктурированных слоев оксида цинка, изготавливаемых методом импульсного электроосаждения
    (Наука, 2016) Клочко, Наталья Петровна; Клепикова, Екатерина Сергеевна; Копач, Владимир Романович; Хрипунов, Геннадий Семенович; Мягченко, Юрий Александрович; Мельничук, Е. Е.
    Показана возможность создания высокогидрофобных наноструктурированных слоев оксида цинка недорогим и приспособленным для крупномасштабного производства методом импульсного электроосаждения из водных растворов без использования каких-либо водоотталкивающих покрытий. Определены условия осаждения высокогидрофобных наноструктурированных слоев оксида цинка, проявляющих "эффект лепестка розы", с определенными морфологией, оптическими свойствами, кристаллической структурой и текстурой. Изготовленные нами наноструктуры ZnO являются перспективным для микро- и наноэлектроники адаптивным материалом, способным под воздействием ультрафиолетового облучения обратимо переходить в гидрофильное состояние.
  • Ескіз
    Документ
    Гетероструктура для обращенного диода на основе электроосажденного в импульсном режиме наномассива оксида цинка и изготовленной методом SILAR пленки иодида меди
    (Наука, 2018) Клочко, Наталья Петровна; Копач, Владимир Романович; Хрипунов, Геннадий Семенович; Корсун, Валерия Евгеньевна; Любов, Виктор Николаевич; Жадан, Дмитрий Олегович; Отченашко, А. Н.; Кириченко, Михаил Валерьевич; Хрипунов, Максим Геннадиевич
    В качестве основы перспективной конструкции обращенного диода сформирована гетероструктура на базе массива наностержней оксида цинка и наноструктурированной пленки иодида меди. Проведено исследование влияния режимов осаждения методом SILAR и последующего иодирования пленок CuI на гладких подложках из стекла, слюды и FTO, а также на поверхности электроосажденных наноструктурированных массивов оксида цинка, на их структуру, электрические и оптические свойства. Выявлена связь изменений, наблюдаемых в структуре и свойствах этого материала, с имеющимися в нем изначально и создаваемыми в процессе иодирования точечными дефектами. Обнаружено, что причиной и условием формирования гетероструктуры обращенного диода на основе электроосажденного в импульсном режиме наномассива оксида цинка и изготовленной методом SILAR пленки иодида меди является формирование вырожденного полупроводника p+-CuI путем избыточного иодирования слоев этого наноструктурированного материала через его развитую поверхность. Впервые изготовлена барьерная гетероструктура n-ZnO/p+-CuI с вольт-амперной характеристикой обращенного диода, коэффициент кривизны которой γ = 12 В−1 подтверждает ее добротность.