Кафедра "Технічна електрохімія"
Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/3034
p>Офіційний сайт кафедри https://web.kpi.kharkov.ua/dte
Кафедра "Технічна електрохімія" була заснована в 1930 році в Харківському хіміко-технологічному інституті. У 1931 році її очолив М. А. Рабінович.
Кафедра технології електрохімічних виробництв почала самостійно функціонувати з 1926 року під керівництвом А. В. Терещенка, але офіційно була затверджена лише в 1930 році.
Кафедра входить до складу Навчально-наукового інституту хімічних технологій та інженерії Національного технічного університету "Харківський політехнічний інститут".
У складі науково-педагогічного колективу кафедри працюють: 2 доктора та 7 кандидатів технічних наук; 1 співробітник має звання професора, 6 – доцента 1 – старшого дослідника.
Переглянути
6 результатів
Результати пошуку
Документ Одержання порошку вольфраму через електрохімічне перероблення вольфрам-кобальтових псевдосплавів для модифікації арамідної тканини(Національний університет цивільного захисту України, 2022) Тульський, Геннадій Георгійович; Ляшок, Лариса Василівна; Гомозов, Валерій Павлович; Васильченко, О. В.; Скатков, Л. І.Документ Методичні вказівки до практичних занять з теоретичної електрохімії(2023) Тульський, Геннадій Георгійович; Артеменко, Валентина Мефодіївна; Дерібо, Світлана ГерманівнаТеоретична електрохімія є фундаментальною дисципліною освітньо-професійної програми спеціалізації «Технічна електрохімія та хімічні технології рідкісних розсіяних елементів» спеціальності 161 «Хімічні технології та інженерія». Для кращого засвоєння теоретичного матеріалу при вивченні дисципліни «Теоретична електрохімія. Ч.1» передбачено проведення практичних занять. Методичні вказівки містять стисле викладення основних теоретичних положень по найбільш важливим розділам, перелік питань, що розглядаються на практичному занятті, приклади вирішення завдань та задачі для самостійного розв’язування, контрольні запитання.Документ Суміщені анодні процеси у розчинах сульфатної кислоти(Національний технічний університет "Харківський політехнічний інститут", 2020) Кравченко, Кристина Миколаївна; Павлов, Богдан Володимирович; Тульський, Геннадій ГеоргійовичТравлення виробів з вуглецевої сталі у розчинах сульфатної кислоти є, з одного боку, поширеним процесом у машинобудуванні та, з іншого боку, шкідливим для екології. По мірі зниження концентрації H2SO4 та насищення розчину Fe2SO4 швидкість травлення оксидної плівки на поверхні сталі знижується. Тому при зниженні концентрації H2SO4 до 25-30 г/л процес травлення припиняють та проводять заміну травильного розчину. При цьому концентрація Fe2SO4 досягає 400 г/л. При травленні спостерігається два процеси: розчинення оксидів та розчинення заліза, яке знаходиться під шаром оксидів. Ці два процеси можуть протікати одночасно. Дослідження електродних процесів у розчинах сульфатної кислоти, що містять неорганічні та органічні домішки є підґрунтям для розробки технологічних показників регенерації відпрацьованих сульфатних розчинів. Для дослідження використовували мало зношувані анодні матеріали – платину і оксиду свинцю (IV). Для визначення кінетичних закономірностей перебігу анодного процесу на обраних анодних матеріалах застосували вольтамперометрію з побудовою одержаних залежностей в тафелевських координатах. Поляризаційні залежності складаються з двох прямолінійних ділянок з перегином при lgia ≈ –1,8 (ia, А·см-2). Нахил першої ділянки не залежить від концентрації H2SO4 і становить 120 мВ. Нахил другої ділянки, для розчинів з концентрацією H2SO4 0,05…0,37 моль·дм –3, становить 60 мВ, а для концентрації 2,5 моль·дм –3 – 71 мВ. Зміна концентрації сульфатної кислоти практично не впливає на поляризацію аноду. При концентрації 5,0 моль·дм –3, в області великої густин струму (≥ 1500 А·м-2), потенціал анода перевищує ТНЗ для діоксиду свинцю. Це сприяє адсорбції сульфат іонів на поверхні композиційного анода і початку утворення активного кисню. В цих умовах, на платиновому аноді спостерігається виділення пероксиду водню. Концентрація Н2SO4 значно впливає на механізм і кінетику виділення кисню. Поляризаційні залежності складаються з двох прямолінійних ділянок з різним нахилом. Для всього діапазону концентрацій сульфатної кислоти, в області малих густин струму спостерігається ділянка з нахилом в 120 мВ. Концентрація сульфатної кислоти на цій ділянці не впливає на кінетику процесу, що узгоджується з літературними даними для платини. Нульовий порядок по рН і незалежність від концентрації сульфатної кислоти для цієї ділянки вказує, що найбільш імовірним механізмом виділення кисню є розряд води. Отримані значення ефективної енергії активації процесу виділення кисню на ОСТП близькі до результатів отриманим на платині – 41,8 кДж·моль -1 при Еа = 1,95 В. Величина ефективної енергії активації вказує на електрохімічну природу поляризації, і її зниження при збільшенні анодного потенціалу - на зменшення міцності зв'язку кисню з поверхнею ОСТП.Документ Обґрунтування технологічних показників застосування газодифузійного катоду в електрохімічному синтезі розчинів гіпохлоритів(Національний технічний університет "Харківський політехнічний інститут", 2020) Рутковська, Катерина Сергіївна; Тульський, Геннадій Георгійович; Гомозов, Валерій Павлович; Русінов, Олександр ІвановичДля удосконалення виробництва гіпохлориту натрію шляхом електролізу водного розчину хлориду натрію застосували газодифузійний електрод для реалізації деполяризації катодного процесу киснем повітря. У якості матеріалів для реалізації деполяризації катодного процесу на поруватому сітчастому струмопідводі були обрані: оксиди марганцю, оксиди кобальту, оксиди рутенію. Ці оксиди характеризуються низькою перенапругою в кисневій реакції. Оксиди обраних металів наносили на сітчастий струмопідвід методом термічного розкладу покривних розчинів. Газодифузійний електрод складався з футерованого титанового струмопідводу, диспергатора газу з поруватого графіту і зовнішнього сітчастого робочого елементу, на якому і відбувались катодні реакції. Одержання каталітично активного шару оксиднометалевих покриттів здійснювалось методом термічного розкладання покривних розчинів. Такий метод повністю відповідає вимогам, що пред’являються до малозношувальних оксиднометалевих електродів для електролізу водних розчинів хлориду натрію: можливість регулювання складу композиційного покриття в широкому діапазоні концентрацій компонентів. На вольт-амперних циклічних залежностях катодного процесу, для всіх досліджувальних матеріалів, спостерігаються визначені ділянки відновлення кисню та суміщеного відновлення кисню і виділення водню. Перша ділянка відновлення кисню спостерігається до рівноважних потенціалів водневої реакції (приблизно – 0,42 В). Швидкість відновлення кисню є невелика і складає 3…5 мА/см2. Різниці в ході вольт-амперної залежності не спостерігається через високу швидкість розгортки потенціалу, яка не призводить до збіднення розчину за киснем у випадку роботи катоду без подачі повітря. На другій ділянці (при потенціалах, що є більш негативним за рівноважний потенціал водневої реакції) спостерігається значне зростання швидкості катодної реакції за рахунок виділення водню. Кисень, при цьому, відновлюється на граничній густині струму. На третій ділянці (більше за – 1,5 В) швидкість катодного процесу практично повністю визначається швидкістю виділення водню. Вплив подачі повітря в газодифузійний катод спостерігається при порівнянні зворотнього ходу циклічних вольт-амперних залежностей. На поверхні сталевої сітки спостерігається зростання струму зворотного ходу в діапазоні потенціалів – 1,0 до 0 В. Що вказує на збільшення адсорбованих часток, що приймають участь в катодному процесі. Як було показано раніше, цей діапазон потенціалів відповідає 1-й і 2-й ділянкам одержаних залежностей на яких відбуваються переважне відновлення кисню. Тому, зростання струму зворотного ходу, при потенціалах позитивніших за 1,0 В, можна пояснити впливом адсорбції кисню на поверхні газопроникнених сітчаних сталевих катодів при подачі повітря. Додавання гіпохлорит-іону практично не впливає на густину струму на першій і другій ділянках вольт-амперних залежностей. Спостерігається зниження катодної густини струму при потенціалах, що є більш негативними від рівноважного потенціалу водневої реакції. Це вказує на певне гальмування процесу виділення водню. На третій ділянці густина струму теж зменшується. Це вказує на те, що гіпохлорит-іони у кількості 0,08 моль дм3 не приймають участь у катодному відновленні. Рекомендованою густиною струму, для досліджуваної конструкції газодифузійного катоду, є 15 мА/см2 при температурі 291…293 К. Катодне відновлення гіпохлорит-іонів, за цих умов, знижується на 55…60 %.Документ Адсорбція оцтової кислоти та промоторів утворення пероксо-груп на платині при високих анодних потенціалах(НТУ "ХПІ", 2019) Білоус, Тетяна Андріївна; Тульський, Геннадій Георгійович; Шахін, Іссам Хуссейн; Кротінова, Карина МиколаївнаПероксиоцтова кислота – це сильний дезінфектант з широким спектром антимікробної активності. Використовується як дезінфікуючий і протимікробний засіб. Переваги використання пероксиоцтової кислоти: відсутні стійкі токсичні похідні, незначна залежність від рН, ефективність та короткий час контакту. В промислових масштабах одержують хімічним синтезом, проте він має безліч суттєвих недоліків. Застосування електрохімічного синтезу пероксиоцтової кислоти, безпосередньо на місцях використання, виключає витрати пов'язані з хімічним синтезом, транспортуванням та зберіганням. Проблема розуміння та керування процесом електрохімічного синтезу пероксиоцтової кислоти ставить задачу отримання нових даних про адсорбцію компонент-розчину в області високих анодних потенціалів.Документ Застосування газодифузійного катоду в електрохімічному синтезі гіпохлориту натрію(НТУ "ХПІ", 2018) Рутковська, Катерина Сергіївна; Тульський, Геннадій Георгійович; Сінкевич, Ірина Валеріївна; Артеменко, Валентина МефодіївнаДля гальмування катодного відновлення гіпохлорит іонів при електрохімічному синтезі гіпохлориту натрію запропоновано змінити природу катодного процесу. За рахунок підводу до границі катод-електроліт кисню створюється можливість зміни природи катодного процесу з виділення водню на відновлення кисню. Зміна природи катодного процесу дозволить значно знизити різницю електродних потенціалів. Шляхом керування швидкістю подачі кисню гальмується підвід ClО⁻ до поверхні катоду. Процес електрохімічного відновлення кисню досліджено із застосуванням газодифузійного катода при електролізі водних розчинів хлориду натрію. В якості поруватого катоду використовували графіт марки ПГ-50. Графітовий електрод активували обробкою в окислювачах для створення на його поверхні шару активних сполук вуглецю, та наносили оксиди нікелю методом термічного розкладу нітрату нікелю. Газодифузійний режим створювали шляхом подачі повітря до тильної поверхні поруватого катоду. Досліджено вплив матеріалу електроду на катодні поляризаційні залежності у водному розчині NaCl на поруватому графіті та на графіті, активованому нікелем, без подачі повітря, з помірною подачею повітря та подачі повітря з надлишком. Графіт, активований оксидами нікелю, показав більшу каталітичну активність у реакції відновлення кисню. Рівноважні потенціали графітового електроду без покриття та з активуючим покриттям досліджувались у водному розчині 3 моль дм⁻³ NaCl. Одержані поляризаційні залежності на обох досліджуваних матеріалах доводять, що подача повітря в газодифузійний електрод змінює хід вольтамперної залежності. Значний зсув рівноважного потенціалу у негативний бік вказує на вплив адсорбційних процесів при формуванні подвійного електричного шару на границі електрод-електроліт. Заміна природи катодного процесу з виділення водню на відновлення кисню дозволяє збільшити вихід за струмом до 52 % і концентрацію NaClО до 27 г дм⁻³. Проаналізовано характер протікання катодного процесу відновлення кисню при зміні режиму подачі повітря. Проведений балансовий електрохімічний синтез гіпохлориту натрію протягом 10 годин довів ефективність запропонованого технічного рішення.