Кафедра "Програмна інженерія та інтелектуальні технології управління ім. А. В. Дабагяна"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/1665

Офіційний сайт кафедри http://web.kpi.kharkov.ua/asu

Від січня 2022 року кафедра має назву "Програмна інженерія та інтелектуальні технології управління ім. А. В. ДАБАГЯНА" (тоді ж, у січні 2022 року в окремий підрозділ виділилася кафедра "Інформаційні системи та технології"), попередні назви – "Програмна інженерія та інформаційні технології управління" (від 2015), "Автоматизовані системи управління" (від 1977); первісна назва – кафедра автоматичного управління рухом.

Кафедра автоматичного управління рухом заснована в 1964 році задля підготовки інженерів-дослідників у галузі автоматичного управління рухом з ініціативи професора Харківського політехнічного інституту Арега Вагаршаковича Дабагяна та генерального конструктора КБ "Електроприладобудування" Володимира Григоровича Сергєєва.

Кафедра входить до складу Навчально-наукового інституту комп'ютерних наук та інформаційних технологій Національного технічного університету "Харківський політехнічний інститут".

У складі науково-педагогічного колективу кафедри працюють: 4 доктора технічних наук; 24 кандидата наук: 22 – технічних, 1 – фізико-математичних, 1 – економічних, 1 – доктор філософії; 3 співробітників мають звання професора, 19 – доцента, 1 – старшого наукового співробітника.

Переглянути

Результати пошуку

Зараз показуємо 1 - 1 з 1
  • Ескіз
    Документ
    Моделі формування рекомендацій у інтелектуальних системах електронної комерції
    (Харківський національний університет Повітряних Сил імені Івана Кожедуба, 2020) Череднічеко, Ольга Юріївна; Янголенко, Ольга Василівна; Іващенко, Оксана Віталіївна; Матвєєв, Олександр Миколайович
    Результати роботи пошукових та фільтраційних механізмів сучасних систем електронної комерції не завжди задовольняють вимоги користувачів, що проявляється у неточних та неповних рекомендаціях товарів за пошуковим запитом. Удосконалення якості рекомендацій для покупців онлайн торгівельних платформ є актуальною задачею. Дана робота наводить моделі формування рекомендацій на основі методів кластерного аналізу, які дозволяють згрупувати схожі товари та схожих клієнтів за їхніми характеристиками. Наведені результати експерименту щодо формування рекомендацій придбання рюкзаків для покупців онлайн магазину спортивного обладнання.