Кафедра "Вища математика"

Постійне посилання колекціїhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/7491

Офіційний сайт кафедри http://web.kpi.kharkov.ua/vm

Напевно відомо, що в 1923 році в ХТІ вже була кафедра математики, а її першим керівником був Бржечка Володимир Фомич. Кафедра вищої математики є одним із найстаріших підрозділів нашого університету. Дисципліни вища математика та нарисна геометрія викладалися починаючи з 1885 року.

У джерел розробки методики викладання математики стояли найвидатніші вчені, академіки Олександр Михайлович Ляпунов, Володимир Андрійович Стеклов й інші. Колектив кафедри намагається на всіх етапах її становлення й розвитку зберігати традиції, закладені засновниками кафедри, продовжує наукову працю, розвиває закладені напрямки в сучасній математичній підготовці студентів університету. Щорічно навчаються математиці майже чотири тисячі студентів денного відділення.

Кафедра входить до складу Навчально-наукового інституту механічної інженерії і транспорту Національного технічного університету "Харківський політехнічний інститут .

У складі науково-педагогічного колективу кафедри працюють: доктор фізико-математичних наук, доктор педагогічних наук, 2 доктора технічних наук, 8 кандидатів наук; 4 співробітника мають звання професора, 8 – доцента.

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Реконструкція гаусовських випадкових функцій за даними спектру
    (Національний технічний університет "Харківський політехнічний інститут", 2021) Пріщенко, Ольга Петрівна; Черемська, Надія Валентинівна
    Відомо, що стаціонарний випадковий процес зображується у вигляді суперпозиції гармонічних коливань із дійсними частотами та некорельованими амплітудами. При дослідженні нестаціонарних процесів природною є наявність зростаючихабо згасаючих коливань. При цьому виникає задача побудови алгоритмів, які дозволяли би конструювати з елементарних нестаціонарних випадкових процесів широкі класи нестаціонарних процесів. Природним узагальненням поняття спектру нестаціонарного випадкового процесу є перехід від дійсного спектру у випадку стаціонарності до комплексно значного або нескінченно кратного спектру в нестаціонарному випадку. Також виникає проблема опису в межах кореляційної теорії випадкових процесів, у яких спектр не має аналогів у випадку стаціонарних випадкових процесів, а саме, точка спектру дійсна, але у відповідного оператора в операторному зображенні ця точка нескінченної кратності, а також, коли сам спектр комплексний. Реконструкція за комплексним спектром нестаціонарної випадкової функції є досить актуальною проблемою як у теоретичному, так і в прикладному аспектах. В статті розроблена процедура реконструкції випадкового процесу, послідовності, поля за спектром для гаусівських випадкових функцій. Порівняно до стаціонарного випадку, тут відкриваються більш широкі можливості, наприклад, побудова нестаціонарного випадкового процесу з дійсним спектром, який має нескінченну кратність та який може бути розподіленим на всьому скінченному відрізку дійсної осі. Наявність такого спектру приводить, на відміну від випадку стаціонарного випадкового процесу, до появи нових складових у спектральному розкладі випадкових функцій, які відповідають внутрішнім станам «струн», тобто породжуються розв’язками систем рівнянь у часткових похідних гіперболічного типу. В статті розглянуто різні випадки спектру несамоспряженого оператора A, а саме, випадок дискретного спектру та випадок неперервного спектру, який розташований на скінченному відрізку дійсної осі, що є областю значень дійснозначної неспадної функції a(x). Розглянуто випадки a(x) = 0, a(x) = a, a(x) = x та a(x) – кусково-постійна функція. Автори вважають перспективними відновлення нестаціонарних послідовностей для різних випадків спектра несамоспряженого оператора A тому, що спектральні розклади є суперпозицією дискретних або континуальних внутрішніх станів осциляторів із комплексними частотами та некорельованими амплітудами і тому матимуть глибокий фізичний зміст.
  • Ескіз
    Документ
    Урахування флуктуацій при розрахунках теплових режимів сонячних батарей
    (НТУ "ХПI", 2010) Черемська, Надія Валентинівна
    У статті досліджено теплові режими з метою визначення загальних закономірностей керування просторово-часовими змінами температурного поля у складній системі при урахуванні впливу різних конструктивних та фізичних параметрів, одержано наближені розрахункові формули для середнього температурного поля та його дисперсії, що враховують флуктуаційні процеси при розрахунку теплових режимів сонячних батарей, які дозволяють внести відповідні поправки при теоретичних розрахунках.