Кафедри
Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393
Переглянути
6 результатів
Результати пошуку
Документ Проблемы преобразования нелинейных систем управления технологическими процессами к эквивалентным линейным в форме Бруновского(ВМВ, 2018) Дмитриенко, Валерий Дмитриевич; Леонов, Сергей Юрьевич; Заковоротный, Александр Юрьевич; Главчев, Дмитрий МаксимовичРассматривается задача линеаризации математических моделей, описывающих технологические процессы, с целью получения удобного инструмента для управления ими. Задача линеаризации решается с помощью геометрической теории управления (ГТУ). Привлекательность ГТУ связана с получением эквивалентных нелинейным моделям линейных моделей, которые удобно использовать для решения задач управления, получая структуры регуляторов или законы управления. После чего осуществляется обратный переход из пространства линейных систем в пространство исходной нелинейной системы. При этом основные аналитические преобразования автоматизированы с помощью специализированного программного обеспечения. Поиск функций преобразования, связывающих переменные линейной и нелинейной моделей, осуществляется с помощью нового конструктивного метода решения системы дифференциальных уравнений в частных производных.Документ Программная компонента для поиска решений системы уравнений в частных производных в ГТУ методом группового учета аргументов(Национальный технический университет "Харьковский политехнический институт", 2019) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Леонов, Сергей Юрьевич; Главчев, Дмитрий МаксимовичВ геометрической теории управления (ГТУ) модели объектов управления, описываемые системами нелинейных обыкновенных дифференциальных уравнений, преобразовываются в эквивалентные линейные модели в форме Бруновского. Затем с помощью линейных моделей определяют оптимальные законы управления линейными объектами, а потом с помощью специальных преобразований переносят эти законы управления на модели исходных нелинейных объектов. Для определения функций преобразования (ФП), связывающих переменные линейных и нелинейных моделей необходимо решать системы дифференциальных уравнений в частных производных. Поскольку универсальных методов решения таких систем уравнений нет, то предложен метод поиска ФП на основе многорядного алгоритма МГУА. Проверка предложенного метода при решении ряда задач с помощью ГТУ подтвердила его работоспособность.Документ Исследование метода поиска функций преобразования нелинейных систем к эквивалентным линейным в геометрической теории управления(НТУ "ХПІ", 2018) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Мезенцев, Николай Викторович; Главчев, Дмитрий МаксимовичОдин из факторов, мешающих расширению области применения геометрической теории управления, это необходимость для определения функций преобразования, связывающих переменные линейных и нелинейных моделей, решать систему дифференциальных уравнений в частных производных при ограничениях в виде дифференциальных неравенств. Решение этой системы уравнений в общем случае не является тривиальной задачей. В статье исследуется влияние вида правых частей системы обыкновенных дифференциальных уравнений, описывающих нелинейный объект, на сложность определения функций преобразования.Документ Исследование возможностей программных компонент бортовой вычислительной системы при преобразовании нелинейных систем к эквивалентным линейным(НТУ "ХПИ", 2018) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Мезенцев, Николай Викторович; Главчев, Дмитрий МаксимовичИсследуются возможности расширения области применения геометрической теории управления (ГТУ). Показано, что применение ГТУ только для части уравнений, описывающих объект, может существенно уменьшить обём вычислений при поиске эквивалентных линейных моделей в форме Бруновского для нелинейных аффинных систем с векторным управлением в пространстве "вход-состояние".Документ Линеаризация математической модели, описывающей процессы управления подвижным составом, методами дифференциальной геометрии(НТУ "ХПИ", 2017) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Мезенцев, Николай Викторович; Главчев, Дмитрий МаксимовичРассматривается задача линеаризации математической модели, описывающей процессы управления подвижным составом, с целью получения удобного инструмента для оптимизации процессов движения объекта управления. Задача линеаризации решается с помощью геометрической теории управления. При этом основные аналитические преобразования автоматизированы с помощью специализированного программного обеспечения. Поиск функций преобразования, связывающих переменные линейной и нелинейной моделей, осуществляется с помощью нового конструктивного метода решения системы дифференциальных уравнений в частных производных.Документ Метод поиска функций преобразования, связывающих переменные нелинейных и линейных моделей в ГТУ(НТУ "ХПИ", 2016) Дмитриенко, Валерий Дмитриевич; Заковоротный, Александр Юрьевич; Главчев, Дмитрий МаксимовичОдной из причин ограниченной области применения геометрической теории управления, является сложность определения преобразований, связывающих переменные линейной и нелинейной моделей и требующих решения системы дифференциальных уравнений в частных производных при ограничениях. В статье предлагается осуществлять поиск функций преобразований с помощью разработанной нейронной сети. Проведенное моделирование показало работоспособность предлагаемого метода для случая, когда исходный нелинейный объект описывается системой уравнений, где правые части почти всех дифференциальных уравнений содержат не более двух одночленов.