Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 2 з 2
  • Ескіз
    Документ
    Динамічний аналіз функціонально-градієнтних пористих сигмовидних сендвич пластин
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Тимченко, Галина Миколаївна
    В роботі розглянуто проблему дослідження вільних коливань функціонально-градієнтних (ФГ) пористих сигмовидних пластин типу сендвіч, які можуть мати складну геометричну форму та різні типи закріплення. Для розв'язання поставленої задачі використано варіаційно-структурний метод (RFM), який поєднує теорію R-функцій та варіаційний метод Релея-Рітца. Математичну постановку задачі виконано в рамках деформаційної теорії пластин першого порядку(FSDT. Розглянуто пластини, зовнішні шари яких вироблено із функціонально-градієнтних матеріалів (ФГМ), а заповнювач є ізотропним. Для різних моделей розподілення пор (сигмовидне рівномірне та нерівномірне) виведені формули для обчислення ефективних властивостей ФГМ. Числові результати для прямокутних пластин порівняно з відомими результатами, отриманими за допомогою інших методів. Досліджено власні коливання пластин зі складною формою плану. Отримані результати представлені у вигляді таблиць та графіків. Проаналізовано вплив об’ємної долі кераміки, різних видів ФГМ та коефіцієнту пористості на власні частоти коливань пластини.
  • Ескіз
    Документ
    Аналіз геометрично нелінійних коливань функціонально-градієнтних пологих оболонок за допомогою теорії R-функцій
    (НТУ "ХПІ", 2015) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна
    Для дослідження геометрично-нелінійних коливань функціонально-градієнтних пологих оболонок зі складною геометричною формою пропонується метод, що суттєво базується на використанні теорії R−функцій. Математична постановка задачі виконана в рамках уточненої теорії першого порядку, яка враховує деформації зсуву. Зведення вихідної нелінійної системи диференціальних рівнянь з частинними похідними до нелінійної системи звичайних диференціальних рівнянь виконується в декілька етапів. Запропонований алгоритм реалізовано в рамках системи POLE-RL, апробовано на тестових задачах та проілюстровано на прикладах оболонок зі складною формою плану.