Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 4 з 4
  • Ескіз
    Документ
    Quantum oscillations in thickness dependences of transport properties of topological insulator Bi2Se3 thin films
    (Publishing House SME "Burlaka", 2017) Rogacheva, E. I.; Sipatov, A. Yu.; Menshikova, S. I.
  • Ескіз
    Публікація
    Quantum Size Effects in Transport Properties of Bi2Te3 Topological Insulator Thin Films
    (IOP Publishing Ltd, 2016) Rogacheva, E. I.; Budnik, A. V.; Sipatov, A. Yu.; Nashchekina, O. N.; Dresselhaus, M. S.
  • Ескіз
    Публікація
    Size effects and thermoelectric properties of Bi0.98Sb0.02 thin films
    (Institute of Thermoelectricity National Academy of Sciences of Ukraine, 2020) Rogacheva, E. I.; Novak, K. V.; Orlova, D. S.; Nashchekina, O. N.; Sipatov, A. Yu.; Lisachuk, G. V.
    The room-temperature dependences of thermoelectric properties (the Seebeck coefficient S, the electrical conductivity σ, the Hall coefficient RH, and the thermoelectric power factor P = S2·σ) on the thickness (d = 5 - 250 nm) of the Bi0.98Sb0.02 solid solution thin films grown on mica substrates by thermal evaporation in vacuum from a single source were obtained. It is shown that the monotonic component of the σ(d) dependence is well described within the framework of the Fuchs-Sondheimer theory for the classical size effect. The presence of an oscillating component in the d-dependences of σ, S, RH and S2·σ is attributed to the manifestation of the quantum size effect, and the experimentally determined period of quantum oscillations Δd = 45 ± 5 nm is in good agreement with the Δd value calculated theoretically within the framework of the model of an infinitely deep potential well. Bibl. 77, Fig. 1.
  • Ескіз
    Публікація
    Thickness-dependent quantum oscillations of the transport properties in bismuth selenide thin films
    (Elsevier, 2019) Rogacheva, E. I.; Menshikova, S. I.; Sipatov, A. Yu.; Nashchekina, O. N.
    The objects of the present study were thin n-Bi2Se3 films with thicknesses d = 10–100 nm, grown by thermal evaporation of n-Bi2Se3 crystals in vacuum onto heated glass substrates. The room temperature d-dependences of the Seebeck coefficient, the Hall coefficient, and the electrical conductivity of the films exhibited an oscillatory behavior, which we attribute to quantum size effects. Such interpretation of the results is supported by the fact that experimentally determined values of the oscillation period are in quite good agreement with the theoretically calculated ones. We suggest that the large amplitude and undamped character of the oscillations in the studied range of thicknesses are connected with the topologically protected gapless surface states of Bi2Se3. The observed oscillatory character of the d-dependences of the transport coefficients should be taken into account when 2D-structures are applied in nanothermoelectricity and other fields of nanoscience and nanotechnology.