Кафедри

Постійне посилання на розділhttps://repository.kpi.kharkov.ua/handle/KhPI-Press/35393

Переглянути

Результати пошуку

Зараз показуємо 1 - 5 з 5
  • Ескіз
    Документ
    Динамічний аналіз функціонально-градієнтних пористих сигмовидних сендвич пластин
    (Національний технічний університет "Харківський політехнічний інститут", 2023) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна; Лінник, Ганна Борисівна; Морачковська, Ірина Олегівна; Тимченко, Галина Миколаївна
    В роботі розглянуто проблему дослідження вільних коливань функціонально-градієнтних (ФГ) пористих сигмовидних пластин типу сендвіч, які можуть мати складну геометричну форму та різні типи закріплення. Для розв'язання поставленої задачі використано варіаційно-структурний метод (RFM), який поєднує теорію R-функцій та варіаційний метод Релея-Рітца. Математичну постановку задачі виконано в рамках деформаційної теорії пластин першого порядку(FSDT. Розглянуто пластини, зовнішні шари яких вироблено із функціонально-градієнтних матеріалів (ФГМ), а заповнювач є ізотропним. Для різних моделей розподілення пор (сигмовидне рівномірне та нерівномірне) виведені формули для обчислення ефективних властивостей ФГМ. Числові результати для прямокутних пластин порівняно з відомими результатами, отриманими за допомогою інших методів. Досліджено власні коливання пластин зі складною формою плану. Отримані результати представлені у вигляді таблиць та графіків. Проаналізовано вплив об’ємної долі кераміки, різних видів ФГМ та коефіцієнту пористості на власні частоти коливань пластини.
  • Ескіз
    Документ
    Three-dimensional free vibration analysis of thermally loaded fgm sandwich plates
    (2020) Burlayenko, V. N.; Sadowski, Tomasz; Dimitrova, Svetlana
    Using the finite element code ABAQUS and the user-defined material utilities UMAT and UMATHT, a solid brick graded finite element is developed for three-dimensional (3D) modeling of free vibrations of thermally loaded functionally gradient material (FGM) sandwich plates. The mechanical and thermal material properties of the FGM sandwich plates are assumed to vary gradually in the thickness direction, according to a power-law fraction distribution. Benchmark problems are firstly considered to assess the performance and accuracy of the proposed 3D graded finite element. Comparisons with the reference solutions revealed high efficiency and good capabilities of the developed element for the 3D simulations of thermomechanical and vibration responses of FGM sandwich plates. Some parametric studies are carried out for the frequency analysis by varying the volume fraction profile and the temperature distribution across the plate thickness.
  • Ескіз
    Документ
    Free vibrations and static analysis of functionally graded sandwich plates with three-dimensional finite elements
    (2020) Burlayenko, V. N.; Sadowski, Tomasz
    A three-dimensional modelling of free vibrations and static response of functionally graded material (FGM) sandwich plates is presented. Natural frequencies and associated mode shapes as well as displacements and stresses are determined by using the finite element method within the ABAQUSTM code. The three-dimensional (3-D) brick graded finite element is programmed and incorporated into the code via the user-defined material subroutine UMAT. The results of modal and static analyses are demonstrated for square metal-ceramic functionally graded simply supported plates with a power-law through-the-thickness variation of the volume fraction of the ceramic constituent. The through-the-thickness distribution of effective material properties at a point are defined based on the Mori-Tanaka scheme. First, exact values of displacements, stresses and natural frequencies available for FGM sandwich plates in the literature are used to verify the performance and estimate the accuracy of the developed 3-D graded finite element. Then, parametric studies are carried out for the frequency analysis by varying the volume fraction profile and value of the ceramic volume fraction.
  • Ескіз
    Документ
    Vibration of functionally graded shallow shells with complex shape
    (Department of Automation, Biomechanics and Mechatronics, 2015) Awrejcewicz, Jan; Kurpa, Lidiya; Shmatko, T.
    The method for studying the geometrically nonlinear vibrations of functionally graded shallow shells with a complex planform is proposed. Сomposite shallow shells made from a mixture of ceramic and metal are considered. In order to take into account varying of the volume fraction of ceramic the power law is accepted. Formulation of the problem is carried out using the refined geometrically nonlinear theory of shallow shells of the first order (Timoshenko’s type). The R-functions theory, variational Ritz’s method, procedure by Bubnov Galerkin and Runge-Kytta method are used in the developed approach. A distinctive feature of the proposed approach is the method of reducing the initial nonlinear system of equations of motion for partial derivatives to a nonlinear system of ordinary differential equations. According to the developed approach first it is necessary to solve linear vibration problem. Further to solve elasticity problems for inhomogeneous differential equations with right hand side, containing eigen functions. Obtained solutions of these problems are applied for representation of unknown functions of the nonlinear problem. Application of the theory of R-functions on every step allows us to extend the proposed approach to the shell with arbitrary shape of plan and different kinds of boundary condition. The proposed method is validated by investigation of test problems for shallow shells with rectangular and elliptical planform and applied to new vibration problems for shallow shells with complex planform.
  • Ескіз
    Документ
    Аналіз геометрично нелінійних коливань функціонально-градієнтних пологих оболонок за допомогою теорії R-функцій
    (НТУ "ХПІ", 2015) Курпа, Лідія Василівна; Шматко, Тетяна Валентинівна
    Для дослідження геометрично-нелінійних коливань функціонально-градієнтних пологих оболонок зі складною геометричною формою пропонується метод, що суттєво базується на використанні теорії R−функцій. Математична постановка задачі виконана в рамках уточненої теорії першого порядку, яка враховує деформації зсуву. Зведення вихідної нелінійної системи диференціальних рівнянь з частинними похідними до нелінійної системи звичайних диференціальних рівнянь виконується в декілька етапів. Запропонований алгоритм реалізовано в рамках системи POLE-RL, апробовано на тестових задачах та проілюстровано на прикладах оболонок зі складною формою плану.