Новые архитектуры и алгоритмы обучения нейронных сетей адаптивной резонансной теории
Дата
2016
ORCID
DOI
doi.org/10.18413/2518-1092-2016-1-1-4-11
Науковий ступінь
Рівень дисертації
Шифр та назва спеціальності
Рада захисту
Установа захисту
Науковий керівник
Члени комітету
Назва журналу
Номер ISSN
Назва тому
Видавець
Анотація
Проанализированы достоинства и недостатки архитектур и алгоритмов обучения дискретных нейронных сетей адаптивной резонансной теории (АРТ). Предложены новые архитектуры нейронных сетей АРТ и алгоритмы обучения сетей АРТ без адаптации весов связей распределенных распознающих нейронов.
The article analyzes the advantages and disadvantages of architectures and algorithms of training the Adaptive Resonance Theory (ART) to discrete neural networks. The authors propose some new architectures of ART neural networks and training algorithms of these networks without adaptation of link weights of distributed recognizing neurons.
The article analyzes the advantages and disadvantages of architectures and algorithms of training the Adaptive Resonance Theory (ART) to discrete neural networks. The authors propose some new architectures of ART neural networks and training algorithms of these networks without adaptation of link weights of distributed recognizing neurons.
Опис
Ключові слова
нейрорегуляторы, недостатки нейронной сети, классификация векторов, динамические процессы, выходные сигналы, training algorithms, adaptive resonance theory, discrete neural networks
Бібліографічний опис
Заковоротный А. Ю. Новые архитектуры и алгоритмы обучения нейронных сетей адаптивной резонансной теории [Электронный ресурс] / А. Ю. Заковоротный // Научный результат. Сер. : Информационные технологии: сетевой журн. = Research result. Ser. : Information technologies. – Электрон. текст. данные. – 2016. – Т. 1, № 1. – С. 4-11. – Режим доступа: http://rrinformation.ru/media/information/2016/1/it1.pdf, вільний (дата звернення 06.04.2020 р.)